ColossalAI/tests/test_tensor/test_net_tp.py

78 lines
2.5 KiB
Python

from tests.components_to_test.registry import non_distributed_component_funcs
import colossalai
import pytest
import torch.multiprocessing as mp
from colossalai.testing import parameterize, rerun_if_address_is_in_use
from colossalai.utils.cuda import get_current_device
from colossalai.utils import free_port
from colossalai.utils import ColoInitContext
from colossalai.tensor import named_params_with_colotensor, TensorSpec, ComputePattern, ParallelAction, ColoTensor
from colossalai.context import ParallelMode
from functools import partial
def run_simple_net():
# A simple net with two stacked nn.Linear
get_components_func = non_distributed_component_funcs.get_callable('simple_net')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
with ColoInitContext(device=get_current_device()):
model = model_builder(checkpoint=True)
parallel_action_list = [
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow, parallel_mode=ParallelMode.PARALLEL_1D)
]
spec = TensorSpec(parallel_action_list)
# A naive way to set spec for all weights in Linear
for name, p in named_params_with_colotensor(model):
if not isinstance(p, ColoTensor):
continue
if 'weight' in name and 'LayerNorm' not in name and 'ln' not in name and 'embed' not in name:
p.set_spec(spec)
model.cuda()
for param in named_params_with_colotensor(model):
print(param)
for i, (data, label) in enumerate(train_dataloader):
data = data.to(get_current_device())
label = label.to(get_current_device())
if criterion:
output = model(data)
loss = criterion(output, label)
else:
output = model(data, label)
loss = output
print(loss.torch_tensor())
loss.backward()
if i > 5:
break
# TODO(jzy) check the results with col.nn.Linear?
def run_dist(rank, world_size, port):
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_simple_net()
@pytest.mark.skip
@pytest.mark.dist
@parameterize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_simple_net(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_simple_net()