mirror of https://github.com/hpcaitech/ColossalAI
[Tensor] test model check results for a simple net (#887)
parent
72cdc06875
commit
a0e5971692
|
@ -2,6 +2,7 @@ from tests.components_to_test.registry import non_distributed_component_funcs
|
|||
|
||||
import colossalai
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
|
@ -9,15 +10,30 @@ from colossalai.utils import free_port
|
|||
from colossalai.utils import ColoInitContext
|
||||
from colossalai.tensor import named_params_with_colotensor, TensorSpec, ComputePattern, ParallelAction, ColoTensor
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
|
||||
from functools import partial
|
||||
import random
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
|
||||
def run_simple_net():
|
||||
def set_seed(seed):
|
||||
random.seed(seed)
|
||||
os.environ['PYTHONHASHSEED'] = str(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed(seed)
|
||||
torch.backends.cudnn.deterministic = True
|
||||
|
||||
|
||||
def run_1d_row_tp():
|
||||
# A simple net with two stacked nn.Linear
|
||||
get_components_func = non_distributed_component_funcs.get_callable('simple_net')
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
|
||||
|
||||
set_seed(1)
|
||||
with ColoInitContext(device=get_current_device()):
|
||||
model = model_builder(checkpoint=True)
|
||||
|
||||
|
@ -26,6 +42,11 @@ def run_simple_net():
|
|||
]
|
||||
spec = TensorSpec(parallel_action_list)
|
||||
|
||||
set_seed(1)
|
||||
if rank == 0:
|
||||
model_torch = model_builder(checkpoint=True)
|
||||
model_torch = model_torch.cuda()
|
||||
|
||||
# A naive way to set spec for all weights in Linear
|
||||
for name, p in named_params_with_colotensor(model):
|
||||
if not isinstance(p, ColoTensor):
|
||||
|
@ -33,15 +54,16 @@ def run_simple_net():
|
|||
if 'weight' in name and 'LayerNorm' not in name and 'ln' not in name and 'embed' not in name:
|
||||
p.set_spec(spec)
|
||||
|
||||
model.cuda()
|
||||
|
||||
for param in named_params_with_colotensor(model):
|
||||
print(param)
|
||||
model = model.cuda()
|
||||
|
||||
for i, (data, label) in enumerate(train_dataloader):
|
||||
data = data.to(get_current_device())
|
||||
label = label.to(get_current_device())
|
||||
|
||||
torch.distributed.broadcast(data, 0, group=gpc.get_group(ParallelMode.PARALLEL_1D))
|
||||
torch.distributed.broadcast(label, 0, group=gpc.get_group(ParallelMode.PARALLEL_1D))
|
||||
|
||||
# Bcast rank0 data to all processes
|
||||
if criterion:
|
||||
output = model(data)
|
||||
loss = criterion(output, label)
|
||||
|
@ -49,22 +71,34 @@ def run_simple_net():
|
|||
output = model(data, label)
|
||||
loss = output
|
||||
|
||||
print(loss.torch_tensor())
|
||||
# For reference
|
||||
if rank == 0:
|
||||
if criterion:
|
||||
output_torch = model_torch(data)
|
||||
loss_torch = criterion(output_torch, label)
|
||||
else:
|
||||
output_torch = model_torch(data, label)
|
||||
loss_torch = output_torch
|
||||
|
||||
if rank == 0:
|
||||
# print(loss.torch_tensor().item())
|
||||
# print('loss torch', loss_torch.item())
|
||||
assert torch.allclose(loss.torch_tensor(), loss_torch, rtol=1e-2)
|
||||
|
||||
loss.backward()
|
||||
|
||||
if rank == 0:
|
||||
loss_torch.backward()
|
||||
if i > 5:
|
||||
break
|
||||
|
||||
# TODO(jzy) check the results with col.nn.Linear?
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_simple_net()
|
||||
run_1d_row_tp()
|
||||
|
||||
|
||||
@pytest.mark.skip
|
||||
@pytest.mark.dist
|
||||
@parameterize('world_size', [1, 4])
|
||||
@rerun_if_address_is_in_use()
|
Loading…
Reference in New Issue