[Tensor] make ColoTensor more robust for getattr (#886)

* [Tensor] make ColoTensor more robust for getattr

* polish

* polish
pull/890/head
Jiarui Fang 2022-04-27 10:57:49 +08:00 committed by GitHub
parent 9bc5a77c31
commit 72cdc06875
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 58 additions and 28 deletions

View File

@ -12,7 +12,8 @@ def colo_mean(types, args=(), kwargs=None, pg=None):
a = a.torch_tensor()
elif isinstance(b, ColoTensor):
b = b.torch_tensor()
if kwargs is None:
kwargs = {}
return torch.allclose(a, b, **kwargs)

View File

@ -152,18 +152,34 @@ class ColoTensor(object):
kwargs = {}
kwargs = {k: v.torch_tensor() if isinstance(v, ColoTensor) else v for k, v in kwargs.items()}
return cls._filter_outputs_with_colo(func(*args,**kwargs))
return cls._filter_outputs_with_colo(func(*args, **kwargs))
def backward(self, gradient: Optional[torch.Tensor] = None, retain_graph: bool = False):
self._torch_tensor.backward(gradient=gradient, retain_graph=retain_graph)
def __add__(self, o) -> "ColoTensor":
return ColoTensor.init_from_torch_tensor(self.torch_tensor() + o.torch_tensor())
def __truediv__(self, o) -> "ColoTensor":
return ColoTensor.init_from_torch_tensor(self.torch_tensor() / o)
def __getattr__(self, name):
def replace_tensor_with_colo(func):
def execute_func(*args, **kwargs):
return self._filter_outputs_with_colo(func(*args,**kwargs))
# transform the ColoTensor args to torch Tensor.
args = [arg.torch_tensor() if isinstance(arg, ColoTensor) else arg for arg in args]
if kwargs is None:
kwargs = {}
kwargs = {k: v.torch_tensor() if isinstance(v, ColoTensor) else v for k, v in kwargs.items()}
return self._filter_outputs_with_colo(func(*args, **kwargs))
return execute_func
assert hasattr(self._torch_tensor, name), f"torch.Tensor has not attribute named as {name}. So is ColoTensor"
attr = getattr(self._torch_tensor, name)
if isinstance(attr, Callable):
return replace_tensor_with_colo(attr)
else:
@ -171,9 +187,12 @@ class ColoTensor(object):
@classmethod
def _filter_outputs_with_colo(cls, outputs):
if outputs is None: # return None
if outputs is None: # return None
return None
elif type(outputs) is not tuple: # num of return val = 1
elif type(outputs) is not tuple: # num of return val = 1
return ColoTensor.init_from_torch_tensor(outputs) if type(outputs) is torch.Tensor else outputs
else: # num of return val > 1
return tuple([ColoTensor.init_from_torch_tensor(output) if type(output) is torch.Tensor else output for output in outputs])
else: # num of return val > 1
return tuple([
ColoTensor.init_from_torch_tensor(output) if type(output) is torch.Tensor else output
for output in outputs
])

View File

@ -86,32 +86,12 @@ def test_no_wrap_op():
assert torch.sum(t) == torch.sum(t_ref)
assert torch.sum(input=t) == torch.sum(input=t_ref)
def test_wrapped_tensor_func():
t_ref = torch.randn(4, 5)
t = ColoTensor.init_from_torch_tensor(t_ref.clone())
# non-func attr
assert t.is_cuda == t_ref.is_cuda
# TODO I don't find out a tensor function which returns None.
# return 1 torch.Tensor
t_abs = t.abs()
assert isinstance(t_abs, ColoTensor) and torch.equal(t_abs.torch_tensor(), t_ref.abs())
# return 1 non-torch.Tensor
assert t.dim() == t_ref.dim()
# return >1 torch.Tensor
t_split1, t_split2 = t.split(2)
assert isinstance(t_split1, ColoTensor) and isinstance(t_split2, ColoTensor)
def check_all():
test_linear()
test_element_wise()
test_no_wrap_op()
test_wrapped_tensor_func()
if __name__ == '__main__':
check_all()

View File

@ -13,3 +13,33 @@ def test_lazy_init_tensor():
lazy_t = ColoTensor(2, 3, dtype=torch.float32, requires_grad=True)
assert lazy_t._torch_tensor.numel() == 0
assert lazy_t.numel() == 6 == lazy_t.torch_tensor().numel()
def test_wrapped_tensor_func():
t_ref = torch.randn(4, 5)
t = ColoTensor.init_from_torch_tensor(t_ref.clone())
# non-func attr
assert t.is_cuda == t_ref.is_cuda
# TODO I don't find out a tensor function which returns None.
# return 1 torch.Tensor
t_abs = t.abs()
assert isinstance(t_abs, ColoTensor) and torch.equal(t_abs.torch_tensor(), t_ref.abs())
# return 1 non-torch.Tensor
assert t.dim() == t_ref.dim()
# return >1 torch.Tensor
t_split1, t_split2 = t.split(2)
assert isinstance(t_split1, ColoTensor) and isinstance(t_split2, ColoTensor)
def test_operand():
t_ref = torch.randn(4, 5)
t = ColoTensor.init_from_torch_tensor(t_ref.clone())
t_ref_res = t_ref + t_ref
t_res = t + t
assert torch.allclose(t_ref_res, t_res)