|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
from colossalai.nn import CheckpointModule
|
|
|
|
|
|
|
|
from .registry import non_distributed_component_funcs
|
|
|
|
from .utils.dummy_data_generator import DummyDataGenerator
|
|
|
|
|
|
|
|
|
|
|
|
class InlineOpModule(CheckpointModule):
|
|
|
|
"""
|
|
|
|
a module with inline Ops
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, checkpoint=False) -> None:
|
|
|
|
super().__init__(checkpoint=checkpoint)
|
|
|
|
self.proj1 = nn.Linear(4, 8)
|
|
|
|
self.proj2 = nn.Linear(8, 8)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
|
|
|
x = self.proj1(x)
|
|
|
|
# inline add_
|
|
|
|
x.add_(10)
|
|
|
|
x = self.proj2(x)
|
|
|
|
# inline relu_
|
|
|
|
x = torch.relu_(x)
|
|
|
|
x = self.proj2(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class DummyDataLoader(DummyDataGenerator):
|
|
|
|
|
|
|
|
def generate(self):
|
|
|
|
data = torch.rand(16, 4)
|
|
|
|
label = torch.randint(low=0, high=2, size=(16,))
|
|
|
|
return data, label
|
|
|
|
|
|
|
|
|
|
|
|
@non_distributed_component_funcs.register(name='inline_op_model')
|
|
|
|
def get_training_components():
|
|
|
|
|
|
|
|
def model_builder(checkpoint=False):
|
|
|
|
return InlineOpModule(checkpoint)
|
|
|
|
|
|
|
|
trainloader = DummyDataLoader()
|
|
|
|
testloader = DummyDataLoader()
|
|
|
|
|
|
|
|
criterion = torch.nn.CrossEntropyLoss()
|
|
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
|
|
return model_builder, trainloader, testloader, HybridAdam, criterion
|