[Gemini] add an inline_op_module to common test models and polish unitests. (#2004)

pull/2010/head
Jiarui Fang 2022-11-23 16:55:54 +08:00 committed by GitHub
parent 56a3dcdabd
commit 3d907faede
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 111 additions and 74 deletions

View File

@ -1 +1 @@
from . import repeated_computed_layer, resnet, nested_model, bert, no_leaf_module, simple_net, gpt
from . import bert, gpt, inline_op_model, nested_model, no_leaf_module, repeated_computed_layer, resnet, simple_net

View File

@ -0,0 +1,52 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from colossalai.nn import CheckpointModule
from .registry import non_distributed_component_funcs
from .utils.dummy_data_generator import DummyDataGenerator
class InlineOpModule(CheckpointModule):
"""
a module with inline Ops
"""
def __init__(self, checkpoint=False) -> None:
super().__init__(checkpoint=checkpoint)
self.proj1 = nn.Linear(4, 8)
self.weight = nn.Parameter(torch.randn(8, 8))
self.proj2 = nn.Linear(8, 4)
def forward(self, x):
x = self.proj1(x)
# inline add_
x.add_(10)
x = F.linear(x, self.weight)
# inline relu_
x = torch.relu_(x)
x = self.proj2(x)
return x
class DummyDataLoader(DummyDataGenerator):
def generate(self):
data = torch.rand(16, 4)
label = torch.randint(low=0, high=2, size=(16,))
return data, label
@non_distributed_component_funcs.register(name='inline_op_module')
def get_training_components():
def model_builder(checkpoint=True):
return InlineOpModule(checkpoint)
trainloader = DummyDataLoader()
testloader = DummyDataLoader()
criterion = torch.nn.CrossEntropyLoss()
from colossalai.nn.optimizer import HybridAdam
return model_builder, trainloader, testloader, HybridAdam, criterion

View File

@ -1,38 +1,9 @@
from colossalai.gemini.paramhooks import BaseParamHookMgr
from torch import nn
import torch
import torch.nn.functional as F
import copy
import torch
class SubNet(nn.Module):
def __init__(self, out_features) -> None:
super().__init__()
self.bias = nn.Parameter(torch.zeros(out_features))
def forward(self, x, weight):
return F.linear(x, weight, self.bias)
class Net(nn.Module):
def __init__(self, checkpoint=False) -> None:
super().__init__()
self.fc1 = nn.Linear(5, 5)
self.sub_fc = SubNet(5)
self.fc2 = nn.Linear(5, 1)
def forward(self, x):
x = self.fc1(x)
x = self.sub_fc(x, self.fc1.weight)
x = self.fc1(x)
x = self.fc2(x)
return x
def net_data():
return (torch.randn(2, 5, dtype=torch.float, device='cuda'),)
from colossalai.gemini.paramhooks import BaseParamHookMgr
from tests.components_to_test.registry import non_distributed_component_funcs
def allclose(tensor_a: torch.Tensor, tensor_b: torch.Tensor, loose=False) -> bool:
@ -41,54 +12,68 @@ def allclose(tensor_a: torch.Tensor, tensor_b: torch.Tensor, loose=False) -> boo
return torch.allclose(tensor_a, tensor_b)
def run_model(model, inputs, label, criterion, use_param_hook=False):
if use_param_hook:
class HooKWrapper:
def __init__(self) -> None:
self.hook_triggered_times = 0
def wrapper_func(self):
def hook(param, grad) -> torch.Tensor or None:
self.hook_triggered_times += 1
return grad
return hook
hookwrapper = HooKWrapper()
param_list = [p for p in model.parameters()]
hook_mgr = BaseParamHookMgr(param_list)
hook_mgr.register_backward_hooks(hookwrapper.wrapper_func())
model.zero_grad(set_to_none=True)
with torch.cuda.amp.autocast():
if criterion:
y = model(inputs)
loss = criterion(y, label)
else:
loss = model(inputs, label)
loss = loss.float()
loss.backward()
if use_param_hook:
hook_mgr.remove_hooks()
return hookwrapper.hook_triggered_times
def test_base_param_hook():
torch.manual_seed(0)
model = Net(checkpoint=True).cuda()
model.train()
inputs = net_data()
test_models = ['repeated_computed_layers', 'resnet18', 'no_leaf_module', 'inline_op_module']
# test_models = ['bert']
def run_model(model, inputs, use_param_hook=False):
if use_param_hook:
for model_name in test_models:
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, _, _, criterion = get_components_func()
class HooKWrapper:
torch.manual_seed(0)
model = model_builder(checkpoint=True).cuda()
model.train()
def __init__(self) -> None:
self.hook_triggered_times = 0
for i, (inputs, label) in enumerate(train_dataloader):
if i > 0:
break
model_copy = copy.deepcopy(model)
def wrapper_func(self):
run_model(model, inputs.cuda(), label.cuda(), criterion, False)
ret2 = run_model(model_copy, inputs.cuda(), label.cuda(), criterion, True)
def hook(param, grad) -> torch.Tensor or None:
self.hook_triggered_times += 1
return grad
# Make sure param hook has only be fired once in case of parameter sharing
assert ret2 == len(list(model.parameters()))
return hook
hookwrapper = HooKWrapper()
param_list = [p for p in model.parameters()]
hook_mgr = BaseParamHookMgr(param_list)
hook_mgr.register_backward_hooks(hookwrapper.wrapper_func())
model.zero_grad(set_to_none=True)
with torch.cuda.amp.autocast():
y = model(*inputs)
loss = y.sum()
loss.backward()
if use_param_hook:
hook_mgr.remove_hooks()
return hookwrapper.hook_triggered_times
model_copy = copy.deepcopy(model)
run_model(model, inputs, False)
ret2 = run_model(model_copy, inputs, True)
# Make sure param hook has only be fired once in case of parameter sharing
assert ret2 == len(list(model.parameters()))
for p, p_copy in zip(model.parameters(), model_copy.parameters()):
assert allclose(p.grad, p_copy.grad), f"{p.grad} vs {p_copy.grad}"
for p, p_copy in zip(model.parameters(), model_copy.parameters()):
assert allclose(p.grad, p_copy.grad), f"{p.grad} vs {p_copy.grad}"
if __name__ == '__main__':