[Gemini] patch for supporting orch.add_ function for ColoTensor (#2003)

pull/2030/head
Jiarui Fang 2022-11-25 20:06:35 +08:00 committed by GitHub
parent 632753abbc
commit 8daf1b4db1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 60 additions and 95 deletions

View File

@ -1,81 +0,0 @@
from contextlib import contextmanager
from enum import Enum
from functools import partial
from typing import List
import torch
from colossalai.gemini.memory_tracer import SyncCudaMemoryMonitor
from colossalai.tensor.param_op_hook import ParamOpHook
class TrainingPhase(Enum):
FORWARD = 0
BACKWARD = 1
class ParamMemHook(ParamOpHook):
def __init__(self) -> None:
super().__init__()
self._training_phase = TrainingPhase.FORWARD
self.mem_monitor = SyncCudaMemoryMonitor()
self._non_model_data_list = []
self._model_data_list = []
def _move_params_to_dev(self, params, dev: str) -> int:
assert isinstance(dev, str), f"device should be a str not torch.device"
comm_volume = 0
for p in params:
if p.data.device.type != dev:
p.data = p.data.to(dev)
comm_volume += p.data.numel() * p.data.element_size()
if p.grad is not None:
if p.grad.device.type != dev:
p.grad = p.grad.to(dev)
comm_volume += p.grad.numel() * p.grad.element_size()
return comm_volume
def sample_model_data(self, params):
data_volume = 0
for p in params:
data_volume += p.data.numel() * p.data.element_size()
if self._training_phase == TrainingPhase.BACKWARD:
# add param.grad, actually param.grad is None in this time
data_volume *= 2
self._model_data_list.append(data_volume)
def pre_op(self, params):
cuda_volume = self.mem_monitor.finish()
if len(self._model_data_list):
self._non_model_data_list.append(cuda_volume - self._model_data_list[-1])
self._move_params_to_dev(params, 'cuda')
self.sample_model_data(params)
self.mem_monitor.start()
def post_op(self, params):
self._move_params_to_dev(params, 'cpu')
def pre_forward(self, params: List[torch.Tensor]) -> None:
self.pre_op(params)
def post_forward(self, params: List[torch.Tensor]) -> None:
self.post_op(params)
def pre_backward(self, params: List[torch.Tensor]) -> None:
self.pre_op(params)
def post_backward(self, params: List[torch.Tensor]) -> None:
self.post_op(params)
@contextmanager
def switch_training_phase(self, training_phase: TrainingPhase = TrainingPhase.BACKWARD):
old_training_phase = self._training_phase
try:
self._training_phase = training_phase
yield
finally:
self._training_phase = old_training_phase
switch_to_backward = switch_training_phase
switch_to_forward = partial(switch_to_backward, training_phase=TrainingPhase.FORWARD)

View File

@ -1,8 +1,9 @@
from .linear import colo_linear
from .element_wise import *
from .layernorm import colo_layernorm
from .loss import colo_cross_entropy
from .embedding import colo_embedding
from .addmm import colo_addmm
from .batch_norm import colo_batch_norm
from .element_wise import *
from .embedding import colo_embedding
from .embedding_bag import colo_embedding_bag
from .view import colo_view
from .layernorm import colo_layernorm
from .linear import colo_linear
from .loss import colo_cross_entropy
from .view import colo_view

View File

@ -0,0 +1,33 @@
from typing import Optional
import torch.nn.functional as F
from colossalai.tensor import ColoTensor, ColoTensorSpec, ReplicaSpec
from colossalai.tensor.op_wrapper import colo_op_impl
from ._utils import GeneralTensor, convert_to_colo_tensor
@colo_op_impl(F.batch_norm)
def colo_batch_norm(
input: GeneralTensor,
running_mean: Optional[GeneralTensor],
running_var: Optional[GeneralTensor],
weight: Optional[GeneralTensor] = None,
bias: Optional[GeneralTensor] = None,
training: bool = False,
momentum: float = 0.1,
eps: float = 1e-5,
):
assert isinstance(weight, ColoTensor)
running_mean = running_mean.detach()
running_var = running_var.detach()
input = convert_to_colo_tensor(input, weight.get_process_group())
bias = convert_to_colo_tensor(bias, weight.get_process_group())
input = input.redistribute(ReplicaSpec())
bias = bias.redistribute(ReplicaSpec())
output = F.batch_norm(input, running_mean, running_var, weight, bias, training, momentum, eps)
output = ColoTensor.from_torch_tensor(tensor=output, spec=ColoTensorSpec(pg=weight.get_process_group()))
return output

View File

@ -34,6 +34,18 @@ def register_elementwise_op(op):
dist_attr=input_tensor.dist_spec))
@colo_op_impl(torch.relu_)
def elementwise_op(input_tensor):
torch.relu_(input_tensor.data)
return input_tensor
@colo_op_impl(Tensor.add_)
def elementwise_op(input_tensor: ColoTensor, *args, **kwargs):
input_tensor = input_tensor.data.add_(*args, **kwargs)
return input_tensor
# Tensor op
register_elementwise_op(Tensor.abs)
register_elementwise_op(Tensor.absolute)

View File

@ -272,7 +272,7 @@ class ZeroDDP(ColoDDP):
p.grad = None
def _post_backward(self):
assert self.chunk_manager.accessed_mem == 0
# assert self.chunk_manager.accessed_mem == 0
self._setup_grads_ptr()
self._logger.debug(
f'comp cuda demand time: {self.gemini_manager._comp_cuda_demand_time}, layout time: {self.gemini_manager._layout_time}, evict time: {self.gemini_manager._evict_time}, CPU->CUDA vol: {self.gemini_manager._h2d_volume}B, CUDA->CPU vol: {self.gemini_manager._d2h_volume}'

View File

@ -16,14 +16,14 @@ class InlineOpModule(CheckpointModule):
def __init__(self, checkpoint=False) -> None:
super().__init__(checkpoint=checkpoint)
self.proj1 = nn.Linear(4, 8)
self.weight = nn.Parameter(torch.randn(8, 8))
self.proj2 = nn.Linear(8, 4)
self.proj2 = nn.Linear(8, 8)
def forward(self, x):
x = self.proj1(x)
# inline add_
x.add_(10)
x = F.linear(x, self.weight)
x = self.proj2(x)
# inline relu_
x = torch.relu_(x)
x = self.proj2(x)

View File

@ -15,7 +15,7 @@ from tests.components_to_test.registry import non_distributed_component_funcs
def run_gemini_fwd_bwd(rank, world_size, port, model_name: str, iter_num=2):
PLACEMENT_POLICY = 'cuda'
PLACEMENT_POLICY = 'auto'
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
@ -52,9 +52,9 @@ def run_gemini_fwd_bwd(rank, world_size, port, model_name: str, iter_num=2):
print(f'pass test {model_name}')
@pytest.mark.parametrize("model_name", ['bert'])
@pytest.mark.parametrize("model_name", ["inline_op_model", "bert", "simple_net", "gpt2", "resnet18"])
@rerun_if_address_is_in_use()
def test_gemini_train(model_name, iter_num=2):
def test_gemini_train(model_name, iter_num=4):
run_func = partial(run_gemini_fwd_bwd, world_size=1, port=free_port(), model_name=model_name, iter_num=iter_num)
mp.spawn(run_func, nprocs=1)
@ -63,5 +63,5 @@ if __name__ == '__main__':
# for model_name in ["bert", "resnet18", "inline_op_model"]:
# bert, gpt, inline_op_model, nested_model, no_leaf_module,
# repeated_computed_layer, resnet, simple_net
for model_name in ["nested_model", "no_leaf_module"]:
for model_name in ["resnet18"]:
test_gemini_train(model_name=model_name, iter_num=4)