|
|
|
from deep_sort.utils.parser import get_config
|
|
|
|
from deep_sort.deep_sort import DeepSort
|
|
|
|
import torch
|
|
|
|
import cv2
|
|
|
|
|
|
|
|
palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1)
|
|
|
|
cfg = get_config()
|
|
|
|
cfg.merge_from_file("deep_sort/configs/deep_sort.yaml")
|
|
|
|
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
|
|
|
|
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
|
|
|
|
nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
|
|
|
|
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
|
|
|
|
use_cuda=True)
|
|
|
|
|
|
|
|
|
|
|
|
def plot_bboxes(image, bboxes, line_thickness=None):
|
|
|
|
# Plots one bounding box on image img
|
|
|
|
tl = line_thickness or round(
|
|
|
|
0.002 * (image.shape[0] + image.shape[1]) / 2) + 1 # line/font thickness
|
|
|
|
for (x1, y1, x2, y2, cls_id, pos_id) in bboxes:
|
|
|
|
if cls_id in ['smoke', 'phone', 'eat']:
|
|
|
|
color = (0, 0, 255)
|
|
|
|
else:
|
|
|
|
color = (0, 255, 0)
|
|
|
|
if cls_id == 'eat':
|
|
|
|
cls_id = 'eat-drink'
|
|
|
|
c1, c2 = (x1, y1), (x2, y2)
|
|
|
|
cv2.rectangle(image, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
|
|
|
|
tf = max(tl - 1, 1) # font thickness
|
|
|
|
t_size = cv2.getTextSize(cls_id, 0, fontScale=tl / 3, thickness=tf)[0]
|
|
|
|
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
|
|
|
|
cv2.rectangle(image, c1, c2, color, -1, cv2.LINE_AA) # filled
|
|
|
|
cv2.putText(image, '{} ID-{}'.format(cls_id, pos_id), (c1[0], c1[1] - 2), 0, tl / 3,
|
|
|
|
[225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
|
|
|
|
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
def update_tracker(target_detector, image):
|
|
|
|
|
|
|
|
new_faces = []
|
|
|
|
_, bboxes = target_detector.detect(image)
|
|
|
|
|
|
|
|
bbox_xywh = []
|
|
|
|
confs = []
|
|
|
|
bboxes2draw = []
|
|
|
|
face_bboxes = []
|
|
|
|
if len(bboxes):
|
|
|
|
|
|
|
|
# Adapt detections to deep sort input format
|
|
|
|
for x1, y1, x2, y2, _, conf in bboxes:
|
|
|
|
|
|
|
|
obj = [
|
|
|
|
int((x1+x2)/2), int((y1+y2)/2),
|
|
|
|
x2-x1, y2-y1
|
|
|
|
]
|
|
|
|
bbox_xywh.append(obj)
|
|
|
|
confs.append(conf)
|
|
|
|
|
|
|
|
xywhs = torch.Tensor(bbox_xywh)
|
|
|
|
confss = torch.Tensor(confs)
|
|
|
|
|
|
|
|
# Pass detections to deepsort
|
|
|
|
outputs = deepsort.update(xywhs, confss, image)
|
|
|
|
|
|
|
|
for value in list(outputs):
|
|
|
|
x1,y1,x2,y2,track_id = value
|
|
|
|
bboxes2draw.append(
|
|
|
|
(x1, y1, x2, y2, '', track_id)
|
|
|
|
)
|
|
|
|
|
|
|
|
image = plot_bboxes(image, bboxes2draw)
|
|
|
|
|
|
|
|
return image, new_faces, face_bboxes
|