from deep_sort.utils.parser import get_config from deep_sort.deep_sort import DeepSort import torch import cv2 palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1) cfg = get_config() cfg.merge_from_file("deep_sort/configs/deep_sort.yaml") deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT, max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE, nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE, max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, use_cuda=True) def plot_bboxes(image, bboxes, line_thickness=None): # Plots one bounding box on image img tl = line_thickness or round( 0.002 * (image.shape[0] + image.shape[1]) / 2) + 1 # line/font thickness for (x1, y1, x2, y2, cls_id, pos_id) in bboxes: if cls_id in ['smoke', 'phone', 'eat']: color = (0, 0, 255) else: color = (0, 255, 0) if cls_id == 'eat': cls_id = 'eat-drink' c1, c2 = (x1, y1), (x2, y2) cv2.rectangle(image, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(cls_id, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(image, c1, c2, color, -1, cv2.LINE_AA) # filled cv2.putText(image, '{} ID-{}'.format(cls_id, pos_id), (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) return image def update_tracker(target_detector, image): new_faces = [] _, bboxes = target_detector.detect(image) bbox_xywh = [] confs = [] bboxes2draw = [] face_bboxes = [] if len(bboxes): # Adapt detections to deep sort input format for x1, y1, x2, y2, _, conf in bboxes: obj = [ int((x1+x2)/2), int((y1+y2)/2), x2-x1, y2-y1 ] bbox_xywh.append(obj) confs.append(conf) xywhs = torch.Tensor(bbox_xywh) confss = torch.Tensor(confs) # Pass detections to deepsort outputs = deepsort.update(xywhs, confss, image) for value in list(outputs): x1,y1,x2,y2,track_id = value bboxes2draw.append( (x1, y1, x2, y2, '', track_id) ) image = plot_bboxes(image, bboxes2draw) return image, new_faces, face_bboxes