mirror of https://github.com/prometheus/prometheus
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
424 lines
15 KiB
424 lines
15 KiB
---
|
|
title: Query functions
|
|
nav_title: Functions
|
|
sort_rank: 3
|
|
---
|
|
|
|
# Functions
|
|
|
|
Some functions have default arguments, e.g. `year(v=vector(time())
|
|
instant-vector)`. This means that there is one argument `v` which is an instant
|
|
vector, which if not provided it will default to the value of the expression
|
|
`vector(time())`.
|
|
|
|
## `abs()`
|
|
|
|
`abs(v instant-vector)` returns the input vector with all sample values converted to
|
|
their absolute value.
|
|
|
|
## `absent()`
|
|
|
|
`absent(v instant-vector)` returns an empty vector if the vector passed to it
|
|
has any elements and a 1-element vector with the value 1 if the vector passed to
|
|
it has no elements.
|
|
|
|
This is useful for alerting on when no time series exist for a given metric name
|
|
and label combination.
|
|
|
|
```
|
|
absent(nonexistent{job="myjob"})
|
|
# => {job="myjob"}
|
|
|
|
absent(nonexistent{job="myjob",instance=~".*"})
|
|
# => {job="myjob"}
|
|
|
|
absent(sum(nonexistent{job="myjob"}))
|
|
# => {}
|
|
```
|
|
|
|
In the first two examples, `absent()` tries to be smart about deriving labels
|
|
of the 1-element output vector from the input vector.
|
|
|
|
## `absent_over_time()`
|
|
|
|
`absent_over_time(v range-vector)` returns an empty vector if the range vector
|
|
passed to it has any elements and a 1-element vector with the value 1 if the
|
|
range vector passed to it has no elements.
|
|
|
|
This is useful for alerting on when no time series exist for a given metric name
|
|
and label combination for a certain amount of time.
|
|
|
|
```
|
|
absent_over_time(nonexistent{job="myjob"}[1h])
|
|
# => {job="myjob"}
|
|
|
|
absent_over_time(nonexistent{job="myjob",instance=~".*"}[1h])
|
|
# => {job="myjob"}
|
|
|
|
absent_over_time(sum(nonexistent{job="myjob"})[1h:])
|
|
# => {}
|
|
```
|
|
|
|
In the first two examples, `absent_over_time()` tries to be smart about deriving
|
|
labels of the 1-element output vector from the input vector.
|
|
|
|
## `ceil()`
|
|
|
|
`ceil(v instant-vector)` rounds the sample values of all elements in `v` up to
|
|
the nearest integer.
|
|
|
|
## `changes()`
|
|
|
|
For each input time series, `changes(v range-vector)` returns the number of
|
|
times its value has changed within the provided time range as an instant
|
|
vector.
|
|
|
|
## `clamp_max()`
|
|
|
|
`clamp_max(v instant-vector, max scalar)` clamps the sample values of all
|
|
elements in `v` to have an upper limit of `max`.
|
|
|
|
## `clamp_min()`
|
|
|
|
`clamp_min(v instant-vector, min scalar)` clamps the sample values of all
|
|
elements in `v` to have a lower limit of `min`.
|
|
|
|
## `day_of_month()`
|
|
|
|
`day_of_month(v=vector(time()) instant-vector)` returns the day of the month
|
|
for each of the given times in UTC. Returned values are from 1 to 31.
|
|
|
|
## `day_of_week()`
|
|
|
|
`day_of_week(v=vector(time()) instant-vector)` returns the day of the week for
|
|
each of the given times in UTC. Returned values are from 0 to 6, where 0 means
|
|
Sunday etc.
|
|
|
|
## `days_in_month()`
|
|
|
|
`days_in_month(v=vector(time()) instant-vector)` returns number of days in the
|
|
month for each of the given times in UTC. Returned values are from 28 to 31.
|
|
|
|
## `delta()`
|
|
|
|
`delta(v range-vector)` calculates the difference between the
|
|
first and last value of each time series element in a range vector `v`,
|
|
returning an instant vector with the given deltas and equivalent labels.
|
|
The delta is extrapolated to cover the full time range as specified in
|
|
the range vector selector, so that it is possible to get a non-integer
|
|
result even if the sample values are all integers.
|
|
|
|
The following example expression returns the difference in CPU temperature
|
|
between now and 2 hours ago:
|
|
|
|
```
|
|
delta(cpu_temp_celsius{host="zeus"}[2h])
|
|
```
|
|
|
|
`delta` should only be used with gauges.
|
|
|
|
## `deriv()`
|
|
|
|
`deriv(v range-vector)` calculates the per-second derivative of the time series in a range
|
|
vector `v`, using [simple linear regression](https://en.wikipedia.org/wiki/Simple_linear_regression).
|
|
|
|
`deriv` should only be used with gauges.
|
|
|
|
## `exp()`
|
|
|
|
`exp(v instant-vector)` calculates the exponential function for all elements in `v`.
|
|
Special cases are:
|
|
|
|
* `Exp(+Inf) = +Inf`
|
|
* `Exp(NaN) = NaN`
|
|
|
|
## `floor()`
|
|
|
|
`floor(v instant-vector)` rounds the sample values of all elements in `v` down
|
|
to the nearest integer.
|
|
|
|
## `histogram_quantile()`
|
|
|
|
`histogram_quantile(φ scalar, b instant-vector)` calculates the φ-quantile (0 ≤ φ
|
|
≤ 1) from the buckets `b` of a
|
|
[histogram](https://prometheus.io/docs/concepts/metric_types/#histogram). (See
|
|
[histograms and summaries](https://prometheus.io/docs/practices/histograms) for
|
|
a detailed explanation of φ-quantiles and the usage of the histogram metric type
|
|
in general.) The samples in `b` are the counts of observations in each bucket.
|
|
Each sample must have a label `le` where the label value denotes the inclusive
|
|
upper bound of the bucket. (Samples without such a label are silently ignored.)
|
|
The [histogram metric type](https://prometheus.io/docs/concepts/metric_types/#histogram)
|
|
automatically provides time series with the `_bucket` suffix and the appropriate
|
|
labels.
|
|
|
|
Use the `rate()` function to specify the time window for the quantile
|
|
calculation.
|
|
|
|
Example: A histogram metric is called `http_request_duration_seconds`. To
|
|
calculate the 90th percentile of request durations over the last 10m, use the
|
|
following expression:
|
|
|
|
histogram_quantile(0.9, rate(http_request_duration_seconds_bucket[10m]))
|
|
|
|
The quantile is calculated for each label combination in
|
|
`http_request_duration_seconds`. To aggregate, use the `sum()` aggregator
|
|
around the `rate()` function. Since the `le` label is required by
|
|
`histogram_quantile()`, it has to be included in the `by` clause. The following
|
|
expression aggregates the 90th percentile by `job`:
|
|
|
|
histogram_quantile(0.9, sum by (job, le) (rate(http_request_duration_seconds_bucket[10m])))
|
|
|
|
To aggregate everything, specify only the `le` label:
|
|
|
|
histogram_quantile(0.9, sum by (le) (rate(http_request_duration_seconds_bucket[10m])))
|
|
|
|
The `histogram_quantile()` function interpolates quantile values by
|
|
assuming a linear distribution within a bucket. The highest bucket
|
|
must have an upper bound of `+Inf`. (Otherwise, `NaN` is returned.) If
|
|
a quantile is located in the highest bucket, the upper bound of the
|
|
second highest bucket is returned. A lower limit of the lowest bucket
|
|
is assumed to be 0 if the upper bound of that bucket is greater than
|
|
0. In that case, the usual linear interpolation is applied within that
|
|
bucket. Otherwise, the upper bound of the lowest bucket is returned
|
|
for quantiles located in the lowest bucket.
|
|
|
|
If `b` has 0 observations, `NaN` is returned. If `b` contains fewer than two buckets,
|
|
`NaN` is returned. For φ < 0, `-Inf` is returned. For φ > 1, `+Inf` is returned.
|
|
|
|
## `holt_winters()`
|
|
|
|
`holt_winters(v range-vector, sf scalar, tf scalar)` produces a smoothed value
|
|
for time series based on the range in `v`. The lower the smoothing factor `sf`,
|
|
the more importance is given to old data. The higher the trend factor `tf`, the
|
|
more trends in the data is considered. Both `sf` and `tf` must be between 0 and
|
|
1.
|
|
|
|
`holt_winters` should only be used with gauges.
|
|
|
|
## `hour()`
|
|
|
|
`hour(v=vector(time()) instant-vector)` returns the hour of the day
|
|
for each of the given times in UTC. Returned values are from 0 to 23.
|
|
|
|
## `idelta()`
|
|
|
|
`idelta(v range-vector)` calculates the difference between the last two samples
|
|
in the range vector `v`, returning an instant vector with the given deltas and
|
|
equivalent labels.
|
|
|
|
`idelta` should only be used with gauges.
|
|
|
|
## `increase()`
|
|
|
|
`increase(v range-vector)` calculates the increase in the
|
|
time series in the range vector. Breaks in monotonicity (such as counter
|
|
resets due to target restarts) are automatically adjusted for. The
|
|
increase is extrapolated to cover the full time range as specified
|
|
in the range vector selector, so that it is possible to get a
|
|
non-integer result even if a counter increases only by integer
|
|
increments.
|
|
|
|
The following example expression returns the number of HTTP requests as measured
|
|
over the last 5 minutes, per time series in the range vector:
|
|
|
|
```
|
|
increase(http_requests_total{job="api-server"}[5m])
|
|
```
|
|
|
|
`increase` should only be used with counters. It is syntactic sugar
|
|
for `rate(v)` multiplied by the number of seconds under the specified
|
|
time range window, and should be used primarily for human readability.
|
|
Use `rate` in recording rules so that increases are tracked consistently
|
|
on a per-second basis.
|
|
|
|
## `irate()`
|
|
|
|
`irate(v range-vector)` calculates the per-second instant rate of increase of
|
|
the time series in the range vector. This is based on the last two data points.
|
|
Breaks in monotonicity (such as counter resets due to target restarts) are
|
|
automatically adjusted for.
|
|
|
|
The following example expression returns the per-second rate of HTTP requests
|
|
looking up to 5 minutes back for the two most recent data points, per time
|
|
series in the range vector:
|
|
|
|
```
|
|
irate(http_requests_total{job="api-server"}[5m])
|
|
```
|
|
|
|
`irate` should only be used when graphing volatile, fast-moving counters.
|
|
Use `rate` for alerts and slow-moving counters, as brief changes
|
|
in the rate can reset the `FOR` clause and graphs consisting entirely of rare
|
|
spikes are hard to read.
|
|
|
|
Note that when combining `irate()` with an
|
|
[aggregation operator](operators.md#aggregation-operators) (e.g. `sum()`)
|
|
or a function aggregating over time (any function ending in `_over_time`),
|
|
always take a `irate()` first, then aggregate. Otherwise `irate()` cannot detect
|
|
counter resets when your target restarts.
|
|
|
|
## `label_join()`
|
|
|
|
For each timeseries in `v`, `label_join(v instant-vector, dst_label string, separator string, src_label_1 string, src_label_2 string, ...)` joins all the values of all the `src_labels`
|
|
using `separator` and returns the timeseries with the label `dst_label` containing the joined value.
|
|
There can be any number of `src_labels` in this function.
|
|
|
|
This example will return a vector with each time series having a `foo` label with the value `a,b,c` added to it:
|
|
|
|
```
|
|
label_join(up{job="api-server",src1="a",src2="b",src3="c"}, "foo", ",", "src1", "src2", "src3")
|
|
```
|
|
|
|
## `label_replace()`
|
|
|
|
For each timeseries in `v`, `label_replace(v instant-vector, dst_label string,
|
|
replacement string, src_label string, regex string)` matches the regular
|
|
expression `regex` against the label `src_label`. If it matches, then the
|
|
timeseries is returned with the label `dst_label` replaced by the expansion of
|
|
`replacement`. `$1` is replaced with the first matching subgroup, `$2` with the
|
|
second etc. If the regular expression doesn't match then the timeseries is
|
|
returned unchanged.
|
|
|
|
This example will return a vector with each time series having a `foo`
|
|
label with the value `a` added to it:
|
|
|
|
```
|
|
label_replace(up{job="api-server",service="a:c"}, "foo", "$1", "service", "(.*):.*")
|
|
```
|
|
|
|
## `ln()`
|
|
|
|
`ln(v instant-vector)` calculates the natural logarithm for all elements in `v`.
|
|
Special cases are:
|
|
|
|
* `ln(+Inf) = +Inf`
|
|
* `ln(0) = -Inf`
|
|
* `ln(x < 0) = NaN`
|
|
* `ln(NaN) = NaN`
|
|
|
|
## `log2()`
|
|
|
|
`log2(v instant-vector)` calculates the binary logarithm for all elements in `v`.
|
|
The special cases are equivalent to those in `ln`.
|
|
|
|
## `log10()`
|
|
|
|
`log10(v instant-vector)` calculates the decimal logarithm for all elements in `v`.
|
|
The special cases are equivalent to those in `ln`.
|
|
|
|
## `minute()`
|
|
|
|
`minute(v=vector(time()) instant-vector)` returns the minute of the hour for each
|
|
of the given times in UTC. Returned values are from 0 to 59.
|
|
|
|
## `month()`
|
|
|
|
`month(v=vector(time()) instant-vector)` returns the month of the year for each
|
|
of the given times in UTC. Returned values are from 1 to 12, where 1 means
|
|
January etc.
|
|
|
|
## `predict_linear()`
|
|
|
|
`predict_linear(v range-vector, t scalar)` predicts the value of time series
|
|
`t` seconds from now, based on the range vector `v`, using [simple linear
|
|
regression](https://en.wikipedia.org/wiki/Simple_linear_regression).
|
|
|
|
`predict_linear` should only be used with gauges.
|
|
|
|
## `rate()`
|
|
|
|
`rate(v range-vector)` calculates the per-second average rate of increase of the
|
|
time series in the range vector. Breaks in monotonicity (such as counter
|
|
resets due to target restarts) are automatically adjusted for. Also, the
|
|
calculation extrapolates to the ends of the time range, allowing for missed
|
|
scrapes or imperfect alignment of scrape cycles with the range's time period.
|
|
|
|
The following example expression returns the per-second rate of HTTP requests as measured
|
|
over the last 5 minutes, per time series in the range vector:
|
|
|
|
```
|
|
rate(http_requests_total{job="api-server"}[5m])
|
|
```
|
|
|
|
`rate` should only be used with counters. It is best suited for alerting,
|
|
and for graphing of slow-moving counters.
|
|
|
|
Note that when combining `rate()` with an aggregation operator (e.g. `sum()`)
|
|
or a function aggregating over time (any function ending in `_over_time`),
|
|
always take a `rate()` first, then aggregate. Otherwise `rate()` cannot detect
|
|
counter resets when your target restarts.
|
|
|
|
## `resets()`
|
|
|
|
For each input time series, `resets(v range-vector)` returns the number of
|
|
counter resets within the provided time range as an instant vector. Any
|
|
decrease in the value between two consecutive samples is interpreted as a
|
|
counter reset.
|
|
|
|
`resets` should only be used with counters.
|
|
|
|
## `round()`
|
|
|
|
`round(v instant-vector, to_nearest=1 scalar)` rounds the sample values of all
|
|
elements in `v` to the nearest integer. Ties are resolved by rounding up. The
|
|
optional `to_nearest` argument allows specifying the nearest multiple to which
|
|
the sample values should be rounded. This multiple may also be a fraction.
|
|
|
|
## `scalar()`
|
|
|
|
Given a single-element input vector, `scalar(v instant-vector)` returns the
|
|
sample value of that single element as a scalar. If the input vector does not
|
|
have exactly one element, `scalar` will return `NaN`.
|
|
|
|
## `sort()`
|
|
|
|
`sort(v instant-vector)` returns vector elements sorted by their sample values,
|
|
in ascending order.
|
|
|
|
## `sort_desc()`
|
|
|
|
Same as `sort`, but sorts in descending order.
|
|
|
|
## `sqrt()`
|
|
|
|
`sqrt(v instant-vector)` calculates the square root of all elements in `v`.
|
|
|
|
## `time()`
|
|
|
|
`time()` returns the number of seconds since January 1, 1970 UTC. Note that
|
|
this does not actually return the current time, but the time at which the
|
|
expression is to be evaluated.
|
|
|
|
## `timestamp()`
|
|
|
|
`timestamp(v instant-vector)` returns the timestamp of each of the samples of
|
|
the given vector as the number of seconds since January 1, 1970 UTC.
|
|
|
|
*This function was added in Prometheus 2.0*
|
|
|
|
## `vector()`
|
|
|
|
`vector(s scalar)` returns the scalar `s` as a vector with no labels.
|
|
|
|
## `year()`
|
|
|
|
`year(v=vector(time()) instant-vector)` returns the year
|
|
for each of the given times in UTC.
|
|
|
|
## `<aggregation>_over_time()`
|
|
|
|
The following functions allow aggregating each series of a given range vector
|
|
over time and return an instant vector with per-series aggregation results:
|
|
|
|
* `avg_over_time(range-vector)`: the average value of all points in the specified interval.
|
|
* `min_over_time(range-vector)`: the minimum value of all points in the specified interval.
|
|
* `max_over_time(range-vector)`: the maximum value of all points in the specified interval.
|
|
* `sum_over_time(range-vector)`: the sum of all values in the specified interval.
|
|
* `count_over_time(range-vector)`: the count of all values in the specified interval.
|
|
* `quantile_over_time(scalar, range-vector)`: the φ-quantile (0 ≤ φ ≤ 1) of the values in the specified interval.
|
|
* `stddev_over_time(range-vector)`: the population standard deviation of the values in the specified interval.
|
|
* `stdvar_over_time(range-vector)`: the population standard variance of the values in the specified interval.
|
|
|
|
Note that all values in the specified interval have the same weight in the
|
|
aggregation even if the values are not equally spaced throughout the interval.
|