The Prometheus monitoring system and time series database.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

1161 lines
27 KiB

// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tsdb
import (
"bufio"
"encoding/binary"
"fmt"
"hash"
"hash/crc32"
"io"
"math"
"os"
"path/filepath"
"sort"
"sync"
"time"
"github.com/go-kit/kit/log"
"github.com/go-kit/kit/log/level"
"github.com/pkg/errors"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/tsdb/fileutil"
"github.com/prometheus/tsdb/labels"
)
// WALEntryType indicates what data a WAL entry contains.
type WALEntryType uint8
const (
// WALMagic is a 4 byte number every WAL segment file starts with.
WALMagic = uint32(0x43AF00EF)
// WALFormatDefault is the version flag for the default outer segment file format.
WALFormatDefault = byte(1)
)
// Entry types in a segment file.
const (
WALEntrySymbols WALEntryType = 1
WALEntrySeries WALEntryType = 2
WALEntrySamples WALEntryType = 3
WALEntryDeletes WALEntryType = 4
)
type walMetrics struct {
fsyncDuration prometheus.Summary
}
func newWalMetrics(wal *SegmentWAL, r prometheus.Registerer) *walMetrics {
m := &walMetrics{}
m.fsyncDuration = prometheus.NewSummary(prometheus.SummaryOpts{
Name: "tsdb_wal_fsync_duration_seconds",
Help: "Duration of WAL fsync.",
})
if r != nil {
r.MustRegister(
m.fsyncDuration,
)
}
return m
}
// WAL is a write ahead log that can log new series labels and samples.
// It must be completely read before new entries are logged.
type WAL interface {
Reader() WALReader
LogSeries([]RefSeries) error
LogSamples([]RefSample) error
LogDeletes([]Stone) error
Truncate(mint int64, keep func(uint64) bool) error
Close() error
}
// NopWAL is a WAL that does nothing.
func NopWAL() WAL {
return nopWAL{}
}
type nopWAL struct{}
func (nopWAL) Read(
seriesf func([]RefSeries),
samplesf func([]RefSample),
deletesf func([]Stone),
) error {
return nil
}
func (w nopWAL) Reader() WALReader { return w }
func (nopWAL) LogSeries([]RefSeries) error { return nil }
func (nopWAL) LogSamples([]RefSample) error { return nil }
func (nopWAL) LogDeletes([]Stone) error { return nil }
func (nopWAL) Truncate(int64, func(uint64) bool) error { return nil }
func (nopWAL) Close() error { return nil }
// WALReader reads entries from a WAL.
type WALReader interface {
Read(
seriesf func([]RefSeries),
samplesf func([]RefSample),
deletesf func([]Stone),
) error
}
// RefSeries is the series labels with the series ID.
type RefSeries struct {
Ref uint64
Labels labels.Labels
}
// RefSample is a timestamp/value pair associated with a reference to a series.
type RefSample struct {
Ref uint64
T int64
V float64
series *memSeries
}
// segmentFile wraps a file object of a segment and tracks the highest timestamp
// it contains. During WAL truncating, all segments with no higher timestamp than
// the truncation threshold can be compacted.
type segmentFile struct {
*os.File
maxTime int64 // highest tombstone or sample timpstamp in segment
minSeries uint64 // lowerst series ID in segment
}
func newSegmentFile(f *os.File) *segmentFile {
return &segmentFile{
File: f,
maxTime: math.MinInt64,
minSeries: math.MaxUint64,
}
}
const (
walSegmentSizeBytes = 256 * 1024 * 1024 // 256 MB
)
// The table gets initialized with sync.Once but may still cause a race
// with any other use of the crc32 package anywhere. Thus we initialize it
// before.
var castagnoliTable *crc32.Table
func init() {
castagnoliTable = crc32.MakeTable(crc32.Castagnoli)
}
// newCRC32 initializes a CRC32 hash with a preconfigured polynomial, so the
// polynomial may be easily changed in one location at a later time, if necessary.
func newCRC32() hash.Hash32 {
return crc32.New(castagnoliTable)
}
// SegmentWAL is a write ahead log for series data.
type SegmentWAL struct {
mtx sync.Mutex
metrics *walMetrics
dirFile *os.File
files []*segmentFile
logger log.Logger
flushInterval time.Duration
segmentSize int64
crc32 hash.Hash32
cur *bufio.Writer
curN int64
stopc chan struct{}
donec chan struct{}
buffers sync.Pool
}
// OpenSegmentWAL opens or creates a write ahead log in the given directory.
// The WAL must be read completely before new data is written.
func OpenSegmentWAL(dir string, logger log.Logger, flushInterval time.Duration, r prometheus.Registerer) (*SegmentWAL, error) {
if err := os.MkdirAll(dir, 0777); err != nil {
return nil, err
}
df, err := fileutil.OpenDir(dir)
if err != nil {
return nil, err
}
if logger == nil {
logger = log.NewNopLogger()
}
w := &SegmentWAL{
dirFile: df,
logger: logger,
flushInterval: flushInterval,
donec: make(chan struct{}),
stopc: make(chan struct{}),
segmentSize: walSegmentSizeBytes,
crc32: newCRC32(),
}
w.metrics = newWalMetrics(w, r)
fns, err := sequenceFiles(w.dirFile.Name())
if err != nil {
return nil, err
}
for _, fn := range fns {
f, err := w.openSegmentFile(fn)
if err != nil {
return nil, err
}
w.files = append(w.files, newSegmentFile(f))
}
go w.run(flushInterval)
return w, nil
}
// repairingWALReader wraps a WAL reader and truncates its underlying SegmentWAL after the last
// valid entry if it encounters corruption.
type repairingWALReader struct {
wal *SegmentWAL
r WALReader
}
func (r *repairingWALReader) Read(
seriesf func([]RefSeries),
samplesf func([]RefSample),
deletesf func([]Stone),
) error {
err := r.r.Read(seriesf, samplesf, deletesf)
if err == nil {
return nil
}
cerr, ok := errors.Cause(err).(walCorruptionErr)
if !ok {
return err
}
return r.wal.truncate(cerr.err, cerr.file, cerr.lastOffset)
}
// truncate the WAL after the last valid entry.
func (w *SegmentWAL) truncate(err error, file int, lastOffset int64) error {
level.Error(w.logger).Log("msg", "WAL corruption detected; truncating",
"err", err, "file", w.files[file].Name(), "pos", lastOffset)
// Close and delete all files after the current one.
for _, f := range w.files[file+1:] {
if err := f.Close(); err != nil {
return err
}
if err := os.Remove(f.Name()); err != nil {
return err
}
}
w.mtx.Lock()
defer w.mtx.Unlock()
w.files = w.files[:file+1]
// Seek the current file to the last valid offset where we continue writing from.
_, err = w.files[file].Seek(lastOffset, os.SEEK_SET)
return err
}
// Reader returns a new reader over the the write ahead log data.
// It must be completely consumed before writing to the WAL.
func (w *SegmentWAL) Reader() WALReader {
return &repairingWALReader{
wal: w,
r: newWALReader(w.files, w.logger),
}
}
func (w *SegmentWAL) getBuffer() *encbuf {
b := w.buffers.Get()
if b == nil {
return &encbuf{b: make([]byte, 0, 64*1024)}
}
return b.(*encbuf)
}
func (w *SegmentWAL) putBuffer(b *encbuf) {
b.reset()
w.buffers.Put(b)
}
// Truncate deletes the values prior to mint and the series which the keep function
// does not indiciate to preserve.
func (w *SegmentWAL) Truncate(mint int64, keep func(uint64) bool) error {
// The last segment is always active.
if len(w.files) < 2 {
return nil
}
var candidates []*segmentFile
// All files have to be traversed as there could be two segments for a block
// with first block having times (10000, 20000) and SECOND one having (0, 10000).
for _, sf := range w.files[:len(w.files)-1] {
if sf.maxTime >= mint {
break
}
// Past WAL files are closed. We have to reopen them for another read.
f, err := w.openSegmentFile(sf.Name())
if err != nil {
return errors.Wrap(err, "open old WAL segment for read")
}
candidates = append(candidates, &segmentFile{
File: f,
minSeries: sf.minSeries,
maxTime: sf.maxTime,
})
}
if len(candidates) == 0 {
return nil
}
r := newWALReader(candidates, w.logger)
// Create a new tmp file.
f, err := w.createSegmentFile(filepath.Join(w.dirFile.Name(), "compact.tmp"))
if err != nil {
return errors.Wrap(err, "create compaction segment")
}
var (
csf = newSegmentFile(f)
crc32 = newCRC32()
decSeries = []RefSeries{}
activeSeries = []RefSeries{}
)
for r.next() {
rt, flag, byt := r.at()
if rt != WALEntrySeries {
continue
}
decSeries = decSeries[:0]
activeSeries = activeSeries[:0]
err := r.decodeSeries(flag, byt, &decSeries)
if err != nil {
return errors.Wrap(err, "decode samples while truncating")
}
for _, s := range decSeries {
if keep(s.Ref) {
activeSeries = append(activeSeries, s)
}
}
buf := w.getBuffer()
flag = w.encodeSeries(buf, activeSeries)
_, err = w.writeTo(csf, crc32, WALEntrySeries, flag, buf.get())
w.putBuffer(buf)
if err != nil {
return err
}
}
if r.Err() != nil {
return errors.Wrap(r.Err(), "read candidate WAL files")
}
off, err := csf.Seek(0, os.SEEK_CUR)
if err != nil {
return err
}
if err := csf.Truncate(off); err != nil {
return err
}
csf.Sync()
csf.Close()
if err := renameFile(csf.Name(), candidates[0].Name()); err != nil {
return err
}
for _, f := range candidates[1:] {
if err := os.RemoveAll(f.Name()); err != nil {
return errors.Wrap(err, "delete WAL segment file")
}
f.Close()
}
if err := w.dirFile.Sync(); err != nil {
return err
}
// The file object of csf still holds the name before rename. Recreate it so
// subsequent truncations do not look at a non-existant file name.
csf.File, err = w.openSegmentFile(candidates[0].Name())
if err != nil {
return err
}
// We don't need it to be open.
csf.Close()
w.mtx.Lock()
w.files = append([]*segmentFile{csf}, w.files[len(candidates):]...)
w.mtx.Unlock()
return nil
}
// LogSeries writes a batch of new series labels to the log.
// The series have to be ordered.
func (w *SegmentWAL) LogSeries(series []RefSeries) error {
buf := w.getBuffer()
flag := w.encodeSeries(buf, series)
w.mtx.Lock()
defer w.mtx.Unlock()
err := w.write(WALEntrySeries, flag, buf.get())
w.putBuffer(buf)
if err != nil {
return errors.Wrap(err, "log series")
}
tf := w.head()
for _, s := range series {
if tf.minSeries > s.Ref {
tf.minSeries = s.Ref
}
}
return nil
}
// LogSamples writes a batch of new samples to the log.
func (w *SegmentWAL) LogSamples(samples []RefSample) error {
buf := w.getBuffer()
flag := w.encodeSamples(buf, samples)
w.mtx.Lock()
defer w.mtx.Unlock()
err := w.write(WALEntrySamples, flag, buf.get())
w.putBuffer(buf)
if err != nil {
return errors.Wrap(err, "log series")
}
tf := w.head()
for _, s := range samples {
if tf.maxTime < s.T {
tf.maxTime = s.T
}
}
return nil
}
// LogDeletes write a batch of new deletes to the log.
func (w *SegmentWAL) LogDeletes(stones []Stone) error {
buf := w.getBuffer()
flag := w.encodeDeletes(buf, stones)
w.mtx.Lock()
defer w.mtx.Unlock()
err := w.write(WALEntryDeletes, flag, buf.get())
w.putBuffer(buf)
if err != nil {
return errors.Wrap(err, "log series")
}
tf := w.head()
for _, s := range stones {
for _, iv := range s.intervals {
if tf.maxTime < iv.Maxt {
tf.maxTime = iv.Maxt
}
}
}
return nil
}
// openSegmentFile opens the given segment file and consumes and validates header.
func (w *SegmentWAL) openSegmentFile(name string) (*os.File, error) {
// We must open all files in read/write mode as we may have to truncate along
// the way and any file may become the head.
f, err := os.OpenFile(name, os.O_RDWR, 0666)
if err != nil {
return nil, err
}
metab := make([]byte, 8)
if n, err := f.Read(metab); err != nil {
return nil, errors.Wrapf(err, "validate meta %q", f.Name())
} else if n != 8 {
return nil, errors.Errorf("invalid header size %d in %q", n, f.Name())
}
if m := binary.BigEndian.Uint32(metab[:4]); m != WALMagic {
return nil, errors.Errorf("invalid magic header %x in %q", m, f.Name())
}
if metab[4] != WALFormatDefault {
return nil, errors.Errorf("unknown WAL segment format %d in %q", metab[4], f.Name())
}
return f, nil
}
// createSegmentFile creates a new segment file with the given name. It preallocates
// the standard segment size if possible and writes the header.
func (w *SegmentWAL) createSegmentFile(name string) (*os.File, error) {
f, err := os.Create(name)
if err != nil {
return nil, err
}
if err = fileutil.Preallocate(f, w.segmentSize, true); err != nil {
return nil, err
}
// Write header metadata for new file.
metab := make([]byte, 8)
binary.BigEndian.PutUint32(metab[:4], WALMagic)
metab[4] = WALFormatDefault
if _, err := f.Write(metab); err != nil {
return nil, err
}
return f, err
}
// cut finishes the currently active segments and opens the next one.
// The encoder is reset to point to the new segment.
func (w *SegmentWAL) cut() error {
// Sync current head to disk and close.
if hf := w.head(); hf != nil {
if err := w.flush(); err != nil {
return err
}
// Finish last segment asynchronously to not block the WAL moving along
// in the new segment.
go func() {
off, err := hf.Seek(0, os.SEEK_CUR)
if err != nil {
level.Error(w.logger).Log("msg", "finish old segment", "segment", hf.Name(), "err", err)
}
if err := hf.Truncate(off); err != nil {
level.Error(w.logger).Log("msg", "finish old segment", "segment", hf.Name(), "err", err)
}
if err := hf.Sync(); err != nil {
level.Error(w.logger).Log("msg", "finish old segment", "segment", hf.Name(), "err", err)
}
if err := hf.Close(); err != nil {
level.Error(w.logger).Log("msg", "finish old segment", "segment", hf.Name(), "err", err)
}
}()
}
p, _, err := nextSequenceFile(w.dirFile.Name())
if err != nil {
return err
}
f, err := w.createSegmentFile(p)
if err != nil {
return err
}
go func() {
if err = w.dirFile.Sync(); err != nil {
level.Error(w.logger).Log("msg", "sync WAL directory", "err", err)
}
}()
w.files = append(w.files, newSegmentFile(f))
// TODO(gouthamve): make the buffer size a constant.
w.cur = bufio.NewWriterSize(f, 8*1024*1024)
w.curN = 8
return nil
}
func (w *SegmentWAL) head() *segmentFile {
if len(w.files) == 0 {
return nil
}
return w.files[len(w.files)-1]
}
// Sync flushes the changes to disk.
func (w *SegmentWAL) Sync() error {
var head *segmentFile
var err error
// Flush the writer and retrieve the reference to the head segment under mutex lock.
func() {
w.mtx.Lock()
defer w.mtx.Unlock()
if err = w.flush(); err != nil {
return
}
head = w.head()
}()
if err != nil {
return errors.Wrap(err, "flush buffer")
}
if head != nil {
// But only fsync the head segment after releasing the mutex as it will block on disk I/O.
start := time.Now()
err := fileutil.Fdatasync(head.File)
w.metrics.fsyncDuration.Observe(time.Since(start).Seconds())
return err
}
return nil
}
func (w *SegmentWAL) sync() error {
if err := w.flush(); err != nil {
return err
}
if w.head() == nil {
return nil
}
start := time.Now()
err := fileutil.Fdatasync(w.head().File)
w.metrics.fsyncDuration.Observe(time.Since(start).Seconds())
return err
}
func (w *SegmentWAL) flush() error {
if w.cur == nil {
return nil
}
return w.cur.Flush()
}
func (w *SegmentWAL) run(interval time.Duration) {
var tick <-chan time.Time
if interval > 0 {
ticker := time.NewTicker(interval)
defer ticker.Stop()
tick = ticker.C
}
defer close(w.donec)
for {
select {
case <-w.stopc:
return
case <-tick:
if err := w.Sync(); err != nil {
level.Error(w.logger).Log("msg", "sync failed", "err", err)
}
}
}
}
// Close syncs all data and closes the underlying resources.
func (w *SegmentWAL) Close() error {
close(w.stopc)
<-w.donec
w.mtx.Lock()
defer w.mtx.Unlock()
if err := w.sync(); err != nil {
return err
}
// On opening, a WAL must be fully consumed once. Afterwards
// only the current segment will still be open.
if hf := w.head(); hf != nil {
return errors.Wrapf(hf.Close(), "closing WAL head %s", hf.Name())
}
return nil
}
const (
minSectorSize = 512
// walPageBytes is the alignment for flushing records to the backing Writer.
// It should be a multiple of the minimum sector size so that WAL can safely
// distinguish between torn writes and ordinary data corruption.
walPageBytes = 16 * minSectorSize
)
func (w *SegmentWAL) write(t WALEntryType, flag uint8, buf []byte) error {
// Cut to the next segment if the entry exceeds the file size unless it would also
// exceed the size of a new segment.
// TODO(gouthamve): Add a test for this case where the commit is greater than segmentSize.
var (
sz = int64(len(buf)) + 6
newsz = w.curN + sz
)
// XXX(fabxc): this currently cuts a new file whenever the WAL was newly opened.
// Probably fine in general but may yield a lot of short files in some cases.
if w.cur == nil || w.curN > w.segmentSize || newsz > w.segmentSize && sz <= w.segmentSize {
if err := w.cut(); err != nil {
return err
}
}
n, err := w.writeTo(w.cur, w.crc32, t, flag, buf)
w.curN += int64(n)
return err
}
func (w *SegmentWAL) writeTo(wr io.Writer, crc32 hash.Hash, t WALEntryType, flag uint8, buf []byte) (int, error) {
if len(buf) == 0 {
return 0, nil
}
crc32.Reset()
wr = io.MultiWriter(crc32, wr)
var b [6]byte
b[0] = byte(t)
b[1] = flag
binary.BigEndian.PutUint32(b[2:], uint32(len(buf)))
n1, err := wr.Write(b[:])
if err != nil {
return n1, err
}
n2, err := wr.Write(buf)
if err != nil {
return n1 + n2, err
}
n3, err := wr.Write(crc32.Sum(b[:0]))
return n1 + n2 + n3, err
}
const (
walSeriesSimple = 1
walSamplesSimple = 1
walDeletesSimple = 1
)
func (w *SegmentWAL) encodeSeries(buf *encbuf, series []RefSeries) uint8 {
for _, s := range series {
buf.putBE64(s.Ref)
buf.putUvarint(len(s.Labels))
for _, l := range s.Labels {
buf.putUvarintStr(l.Name)
buf.putUvarintStr(l.Value)
}
}
return walSeriesSimple
}
func (w *SegmentWAL) encodeSamples(buf *encbuf, samples []RefSample) uint8 {
if len(samples) == 0 {
return walSamplesSimple
}
// Store base timestamp and base reference number of first sample.
// All samples encode their timestamp and ref as delta to those.
//
// TODO(fabxc): optimize for all samples having the same timestamp.
first := samples[0]
buf.putBE64(first.Ref)
buf.putBE64int64(first.T)
for _, s := range samples {
buf.putVarint64(int64(s.Ref) - int64(first.Ref))
buf.putVarint64(s.T - first.T)
buf.putBE64(math.Float64bits(s.V))
}
return walSamplesSimple
}
func (w *SegmentWAL) encodeDeletes(buf *encbuf, stones []Stone) uint8 {
for _, s := range stones {
for _, iv := range s.intervals {
buf.putBE64(s.ref)
buf.putVarint64(iv.Mint)
buf.putVarint64(iv.Maxt)
}
}
return walDeletesSimple
}
// walReader decodes and emits write ahead log entries.
type walReader struct {
logger log.Logger
files []*segmentFile
cur int
buf []byte
crc32 hash.Hash32
curType WALEntryType
curFlag byte
curBuf []byte
lastOffset int64 // offset after last successfully read entry
err error
}
func newWALReader(files []*segmentFile, l log.Logger) *walReader {
if l == nil {
l = log.NewNopLogger()
}
return &walReader{
logger: l,
files: files,
buf: make([]byte, 0, 128*4096),
crc32: newCRC32(),
}
}
// Err returns the last error the reader encountered.
func (r *walReader) Err() error {
return r.err
}
func (r *walReader) Read(
seriesf func([]RefSeries),
samplesf func([]RefSample),
deletesf func([]Stone),
) error {
// Concurrency for replaying the WAL is very limited. We at least split out decoding and
// processing into separate threads.
// Historically, the processing is the bottleneck with reading and decoding using only
// 15% of the CPU.
var (
seriesPool sync.Pool
samplePool sync.Pool
deletePool sync.Pool
)
donec := make(chan struct{})
datac := make(chan interface{}, 100)
go func() {
defer close(donec)
for x := range datac {
switch v := x.(type) {
case []RefSeries:
if seriesf != nil {
seriesf(v)
}
seriesPool.Put(v[:0])
case []RefSample:
if samplesf != nil {
samplesf(v)
}
samplePool.Put(v[:0])
case []Stone:
if deletesf != nil {
deletesf(v)
}
deletePool.Put(v[:0])
default:
level.Error(r.logger).Log("msg", "unexpected data type")
}
}
}()
var err error
for r.next() {
et, flag, b := r.at()
// In decoding below we never return a walCorruptionErr for now.
// Those should generally be catched by entry decoding before.
switch et {
case WALEntrySeries:
var series []RefSeries
if v := seriesPool.Get(); v == nil {
series = make([]RefSeries, 0, 512)
} else {
series = v.([]RefSeries)
}
err := r.decodeSeries(flag, b, &series)
if err != nil {
err = errors.Wrap(err, "decode series entry")
break
}
datac <- series
cf := r.current()
for _, s := range series {
if cf.minSeries > s.Ref {
cf.minSeries = s.Ref
}
}
case WALEntrySamples:
var samples []RefSample
if v := samplePool.Get(); v == nil {
samples = make([]RefSample, 0, 512)
} else {
samples = v.([]RefSample)
}
err := r.decodeSamples(flag, b, &samples)
if err != nil {
err = errors.Wrap(err, "decode samples entry")
break
}
datac <- samples
// Update the times for the WAL segment file.
cf := r.current()
for _, s := range samples {
if cf.maxTime < s.T {
cf.maxTime = s.T
}
}
case WALEntryDeletes:
var deletes []Stone
if v := deletePool.Get(); v == nil {
deletes = make([]Stone, 0, 512)
} else {
deletes = v.([]Stone)
}
err := r.decodeDeletes(flag, b, &deletes)
if err != nil {
err = errors.Wrap(err, "decode delete entry")
break
}
datac <- deletes
// Update the times for the WAL segment file.
cf := r.current()
for _, s := range deletes {
for _, iv := range s.intervals {
if cf.maxTime < iv.Maxt {
cf.maxTime = iv.Maxt
}
}
}
}
}
close(datac)
<-donec
if err != nil {
return err
}
if r.Err() != nil {
return errors.Wrap(r.Err(), "read entry")
}
return nil
}
func (r *walReader) at() (WALEntryType, byte, []byte) {
return r.curType, r.curFlag, r.curBuf
}
// next returns decodes the next entry pair and returns true
// if it was succesful.
func (r *walReader) next() bool {
if r.cur >= len(r.files) {
return false
}
cf := r.files[r.cur]
// Remember the offset after the last correctly read entry. If the next one
// is corrupted, this is where we can safely truncate.
r.lastOffset, r.err = cf.Seek(0, os.SEEK_CUR)
if r.err != nil {
return false
}
et, flag, b, err := r.entry(cf)
// If we reached the end of the reader, advance to the next one
// and close.
// Do not close on the last one as it will still be appended to.
if err == io.EOF {
if r.cur == len(r.files)-1 {
return false
}
// Current reader completed, close and move to the next one.
if err := cf.Close(); err != nil {
r.err = err
return false
}
r.cur++
return r.next()
}
if err != nil {
r.err = err
return false
}
r.curType = et
r.curFlag = flag
r.curBuf = b
return r.err == nil
}
func (r *walReader) current() *segmentFile {
return r.files[r.cur]
}
// walCorruptionErr is a type wrapper for errors that indicate WAL corruption
// and trigger a truncation.
type walCorruptionErr struct {
err error
file int
lastOffset int64
}
func (e walCorruptionErr) Error() string {
return fmt.Sprintf("%s <file: %d, lastOffset: %d>", e.err, e.file, e.lastOffset)
}
func (r *walReader) corruptionErr(s string, args ...interface{}) error {
return walCorruptionErr{
err: errors.Errorf(s, args...),
file: r.cur,
lastOffset: r.lastOffset,
}
}
func (r *walReader) entry(cr io.Reader) (WALEntryType, byte, []byte, error) {
r.crc32.Reset()
tr := io.TeeReader(cr, r.crc32)
b := make([]byte, 6)
if n, err := tr.Read(b); err != nil {
return 0, 0, nil, err
} else if n != 6 {
return 0, 0, nil, r.corruptionErr("invalid entry header size %d", n)
}
var (
etype = WALEntryType(b[0])
flag = b[1]
length = int(binary.BigEndian.Uint32(b[2:]))
)
// Exit if we reached pre-allocated space.
if etype == 0 {
return 0, 0, nil, io.EOF
}
if etype != WALEntrySeries && etype != WALEntrySamples && etype != WALEntryDeletes {
return 0, 0, nil, r.corruptionErr("invalid entry type %d", etype)
}
if length > len(r.buf) {
r.buf = make([]byte, length)
}
buf := r.buf[:length]
if n, err := tr.Read(buf); err != nil {
return 0, 0, nil, err
} else if n != length {
return 0, 0, nil, r.corruptionErr("invalid entry body size %d", n)
}
if n, err := cr.Read(b[:4]); err != nil {
return 0, 0, nil, err
} else if n != 4 {
return 0, 0, nil, r.corruptionErr("invalid checksum length %d", n)
}
if exp, has := binary.BigEndian.Uint32(b[:4]), r.crc32.Sum32(); has != exp {
return 0, 0, nil, r.corruptionErr("unexpected CRC32 checksum %x, want %x", has, exp)
}
return etype, flag, buf, nil
}
func (r *walReader) decodeSeries(flag byte, b []byte, res *[]RefSeries) error {
dec := decbuf{b: b}
for len(dec.b) > 0 && dec.err() == nil {
ref := dec.be64()
lset := make(labels.Labels, dec.uvarint())
for i := range lset {
lset[i].Name = dec.uvarintStr()
lset[i].Value = dec.uvarintStr()
}
sort.Sort(lset)
*res = append(*res, RefSeries{
Ref: ref,
Labels: lset,
})
}
if dec.err() != nil {
return dec.err()
}
if len(dec.b) > 0 {
return errors.Errorf("unexpected %d bytes left in entry", len(dec.b))
}
return nil
}
func (r *walReader) decodeSamples(flag byte, b []byte, res *[]RefSample) error {
if len(b) == 0 {
return nil
}
dec := decbuf{b: b}
var (
baseRef = dec.be64()
baseTime = dec.be64int64()
)
for len(dec.b) > 0 && dec.err() == nil {
dref := dec.varint64()
dtime := dec.varint64()
val := dec.be64()
*res = append(*res, RefSample{
Ref: uint64(int64(baseRef) + dref),
T: baseTime + dtime,
V: math.Float64frombits(val),
})
}
if dec.err() != nil {
return errors.Wrapf(dec.err(), "decode error after %d samples", len(*res))
}
if len(dec.b) > 0 {
return errors.Errorf("unexpected %d bytes left in entry", len(dec.b))
}
return nil
}
func (r *walReader) decodeDeletes(flag byte, b []byte, res *[]Stone) error {
dec := &decbuf{b: b}
for dec.len() > 0 && dec.err() == nil {
*res = append(*res, Stone{
ref: dec.be64(),
intervals: Intervals{
{Mint: dec.varint64(), Maxt: dec.varint64()},
},
})
}
if dec.err() != nil {
return dec.err()
}
if len(dec.b) > 0 {
return errors.Errorf("unexpected %d bytes left in entry", len(dec.b))
}
return nil
}