// Copyright 2017 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package tsdb import ( "bufio" "encoding/binary" "fmt" "hash" "hash/crc32" "io" "math" "os" "path/filepath" "sort" "sync" "time" "github.com/go-kit/kit/log" "github.com/go-kit/kit/log/level" "github.com/pkg/errors" "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/tsdb/fileutil" "github.com/prometheus/tsdb/labels" ) // WALEntryType indicates what data a WAL entry contains. type WALEntryType uint8 const ( // WALMagic is a 4 byte number every WAL segment file starts with. WALMagic = uint32(0x43AF00EF) // WALFormatDefault is the version flag for the default outer segment file format. WALFormatDefault = byte(1) ) // Entry types in a segment file. const ( WALEntrySymbols WALEntryType = 1 WALEntrySeries WALEntryType = 2 WALEntrySamples WALEntryType = 3 WALEntryDeletes WALEntryType = 4 ) type walMetrics struct { fsyncDuration prometheus.Summary } func newWalMetrics(wal *SegmentWAL, r prometheus.Registerer) *walMetrics { m := &walMetrics{} m.fsyncDuration = prometheus.NewSummary(prometheus.SummaryOpts{ Name: "tsdb_wal_fsync_duration_seconds", Help: "Duration of WAL fsync.", }) if r != nil { r.MustRegister( m.fsyncDuration, ) } return m } // WAL is a write ahead log that can log new series labels and samples. // It must be completely read before new entries are logged. type WAL interface { Reader() WALReader LogSeries([]RefSeries) error LogSamples([]RefSample) error LogDeletes([]Stone) error Truncate(mint int64, keep func(uint64) bool) error Close() error } // NopWAL is a WAL that does nothing. func NopWAL() WAL { return nopWAL{} } type nopWAL struct{} func (nopWAL) Read( seriesf func([]RefSeries), samplesf func([]RefSample), deletesf func([]Stone), ) error { return nil } func (w nopWAL) Reader() WALReader { return w } func (nopWAL) LogSeries([]RefSeries) error { return nil } func (nopWAL) LogSamples([]RefSample) error { return nil } func (nopWAL) LogDeletes([]Stone) error { return nil } func (nopWAL) Truncate(int64, func(uint64) bool) error { return nil } func (nopWAL) Close() error { return nil } // WALReader reads entries from a WAL. type WALReader interface { Read( seriesf func([]RefSeries), samplesf func([]RefSample), deletesf func([]Stone), ) error } // RefSeries is the series labels with the series ID. type RefSeries struct { Ref uint64 Labels labels.Labels } // RefSample is a timestamp/value pair associated with a reference to a series. type RefSample struct { Ref uint64 T int64 V float64 series *memSeries } // segmentFile wraps a file object of a segment and tracks the highest timestamp // it contains. During WAL truncating, all segments with no higher timestamp than // the truncation threshold can be compacted. type segmentFile struct { *os.File maxTime int64 // highest tombstone or sample timpstamp in segment minSeries uint64 // lowerst series ID in segment } func newSegmentFile(f *os.File) *segmentFile { return &segmentFile{ File: f, maxTime: math.MinInt64, minSeries: math.MaxUint64, } } const ( walSegmentSizeBytes = 256 * 1024 * 1024 // 256 MB ) // The table gets initialized with sync.Once but may still cause a race // with any other use of the crc32 package anywhere. Thus we initialize it // before. var castagnoliTable *crc32.Table func init() { castagnoliTable = crc32.MakeTable(crc32.Castagnoli) } // newCRC32 initializes a CRC32 hash with a preconfigured polynomial, so the // polynomial may be easily changed in one location at a later time, if necessary. func newCRC32() hash.Hash32 { return crc32.New(castagnoliTable) } // SegmentWAL is a write ahead log for series data. type SegmentWAL struct { mtx sync.Mutex metrics *walMetrics dirFile *os.File files []*segmentFile logger log.Logger flushInterval time.Duration segmentSize int64 crc32 hash.Hash32 cur *bufio.Writer curN int64 stopc chan struct{} donec chan struct{} buffers sync.Pool } // OpenSegmentWAL opens or creates a write ahead log in the given directory. // The WAL must be read completely before new data is written. func OpenSegmentWAL(dir string, logger log.Logger, flushInterval time.Duration, r prometheus.Registerer) (*SegmentWAL, error) { if err := os.MkdirAll(dir, 0777); err != nil { return nil, err } df, err := fileutil.OpenDir(dir) if err != nil { return nil, err } if logger == nil { logger = log.NewNopLogger() } w := &SegmentWAL{ dirFile: df, logger: logger, flushInterval: flushInterval, donec: make(chan struct{}), stopc: make(chan struct{}), segmentSize: walSegmentSizeBytes, crc32: newCRC32(), } w.metrics = newWalMetrics(w, r) fns, err := sequenceFiles(w.dirFile.Name()) if err != nil { return nil, err } for _, fn := range fns { f, err := w.openSegmentFile(fn) if err != nil { return nil, err } w.files = append(w.files, newSegmentFile(f)) } go w.run(flushInterval) return w, nil } // repairingWALReader wraps a WAL reader and truncates its underlying SegmentWAL after the last // valid entry if it encounters corruption. type repairingWALReader struct { wal *SegmentWAL r WALReader } func (r *repairingWALReader) Read( seriesf func([]RefSeries), samplesf func([]RefSample), deletesf func([]Stone), ) error { err := r.r.Read(seriesf, samplesf, deletesf) if err == nil { return nil } cerr, ok := errors.Cause(err).(walCorruptionErr) if !ok { return err } return r.wal.truncate(cerr.err, cerr.file, cerr.lastOffset) } // truncate the WAL after the last valid entry. func (w *SegmentWAL) truncate(err error, file int, lastOffset int64) error { level.Error(w.logger).Log("msg", "WAL corruption detected; truncating", "err", err, "file", w.files[file].Name(), "pos", lastOffset) // Close and delete all files after the current one. for _, f := range w.files[file+1:] { if err := f.Close(); err != nil { return err } if err := os.Remove(f.Name()); err != nil { return err } } w.mtx.Lock() defer w.mtx.Unlock() w.files = w.files[:file+1] // Seek the current file to the last valid offset where we continue writing from. _, err = w.files[file].Seek(lastOffset, os.SEEK_SET) return err } // Reader returns a new reader over the the write ahead log data. // It must be completely consumed before writing to the WAL. func (w *SegmentWAL) Reader() WALReader { return &repairingWALReader{ wal: w, r: newWALReader(w.files, w.logger), } } func (w *SegmentWAL) getBuffer() *encbuf { b := w.buffers.Get() if b == nil { return &encbuf{b: make([]byte, 0, 64*1024)} } return b.(*encbuf) } func (w *SegmentWAL) putBuffer(b *encbuf) { b.reset() w.buffers.Put(b) } // Truncate deletes the values prior to mint and the series which the keep function // does not indiciate to preserve. func (w *SegmentWAL) Truncate(mint int64, keep func(uint64) bool) error { // The last segment is always active. if len(w.files) < 2 { return nil } var candidates []*segmentFile // All files have to be traversed as there could be two segments for a block // with first block having times (10000, 20000) and SECOND one having (0, 10000). for _, sf := range w.files[:len(w.files)-1] { if sf.maxTime >= mint { break } // Past WAL files are closed. We have to reopen them for another read. f, err := w.openSegmentFile(sf.Name()) if err != nil { return errors.Wrap(err, "open old WAL segment for read") } candidates = append(candidates, &segmentFile{ File: f, minSeries: sf.minSeries, maxTime: sf.maxTime, }) } if len(candidates) == 0 { return nil } r := newWALReader(candidates, w.logger) // Create a new tmp file. f, err := w.createSegmentFile(filepath.Join(w.dirFile.Name(), "compact.tmp")) if err != nil { return errors.Wrap(err, "create compaction segment") } var ( csf = newSegmentFile(f) crc32 = newCRC32() decSeries = []RefSeries{} activeSeries = []RefSeries{} ) for r.next() { rt, flag, byt := r.at() if rt != WALEntrySeries { continue } decSeries = decSeries[:0] activeSeries = activeSeries[:0] err := r.decodeSeries(flag, byt, &decSeries) if err != nil { return errors.Wrap(err, "decode samples while truncating") } for _, s := range decSeries { if keep(s.Ref) { activeSeries = append(activeSeries, s) } } buf := w.getBuffer() flag = w.encodeSeries(buf, activeSeries) _, err = w.writeTo(csf, crc32, WALEntrySeries, flag, buf.get()) w.putBuffer(buf) if err != nil { return err } } if r.Err() != nil { return errors.Wrap(r.Err(), "read candidate WAL files") } off, err := csf.Seek(0, os.SEEK_CUR) if err != nil { return err } if err := csf.Truncate(off); err != nil { return err } csf.Sync() csf.Close() if err := renameFile(csf.Name(), candidates[0].Name()); err != nil { return err } for _, f := range candidates[1:] { if err := os.RemoveAll(f.Name()); err != nil { return errors.Wrap(err, "delete WAL segment file") } f.Close() } if err := w.dirFile.Sync(); err != nil { return err } // The file object of csf still holds the name before rename. Recreate it so // subsequent truncations do not look at a non-existant file name. csf.File, err = w.openSegmentFile(candidates[0].Name()) if err != nil { return err } // We don't need it to be open. csf.Close() w.mtx.Lock() w.files = append([]*segmentFile{csf}, w.files[len(candidates):]...) w.mtx.Unlock() return nil } // LogSeries writes a batch of new series labels to the log. // The series have to be ordered. func (w *SegmentWAL) LogSeries(series []RefSeries) error { buf := w.getBuffer() flag := w.encodeSeries(buf, series) w.mtx.Lock() defer w.mtx.Unlock() err := w.write(WALEntrySeries, flag, buf.get()) w.putBuffer(buf) if err != nil { return errors.Wrap(err, "log series") } tf := w.head() for _, s := range series { if tf.minSeries > s.Ref { tf.minSeries = s.Ref } } return nil } // LogSamples writes a batch of new samples to the log. func (w *SegmentWAL) LogSamples(samples []RefSample) error { buf := w.getBuffer() flag := w.encodeSamples(buf, samples) w.mtx.Lock() defer w.mtx.Unlock() err := w.write(WALEntrySamples, flag, buf.get()) w.putBuffer(buf) if err != nil { return errors.Wrap(err, "log series") } tf := w.head() for _, s := range samples { if tf.maxTime < s.T { tf.maxTime = s.T } } return nil } // LogDeletes write a batch of new deletes to the log. func (w *SegmentWAL) LogDeletes(stones []Stone) error { buf := w.getBuffer() flag := w.encodeDeletes(buf, stones) w.mtx.Lock() defer w.mtx.Unlock() err := w.write(WALEntryDeletes, flag, buf.get()) w.putBuffer(buf) if err != nil { return errors.Wrap(err, "log series") } tf := w.head() for _, s := range stones { for _, iv := range s.intervals { if tf.maxTime < iv.Maxt { tf.maxTime = iv.Maxt } } } return nil } // openSegmentFile opens the given segment file and consumes and validates header. func (w *SegmentWAL) openSegmentFile(name string) (*os.File, error) { // We must open all files in read/write mode as we may have to truncate along // the way and any file may become the head. f, err := os.OpenFile(name, os.O_RDWR, 0666) if err != nil { return nil, err } metab := make([]byte, 8) if n, err := f.Read(metab); err != nil { return nil, errors.Wrapf(err, "validate meta %q", f.Name()) } else if n != 8 { return nil, errors.Errorf("invalid header size %d in %q", n, f.Name()) } if m := binary.BigEndian.Uint32(metab[:4]); m != WALMagic { return nil, errors.Errorf("invalid magic header %x in %q", m, f.Name()) } if metab[4] != WALFormatDefault { return nil, errors.Errorf("unknown WAL segment format %d in %q", metab[4], f.Name()) } return f, nil } // createSegmentFile creates a new segment file with the given name. It preallocates // the standard segment size if possible and writes the header. func (w *SegmentWAL) createSegmentFile(name string) (*os.File, error) { f, err := os.Create(name) if err != nil { return nil, err } if err = fileutil.Preallocate(f, w.segmentSize, true); err != nil { return nil, err } // Write header metadata for new file. metab := make([]byte, 8) binary.BigEndian.PutUint32(metab[:4], WALMagic) metab[4] = WALFormatDefault if _, err := f.Write(metab); err != nil { return nil, err } return f, err } // cut finishes the currently active segments and opens the next one. // The encoder is reset to point to the new segment. func (w *SegmentWAL) cut() error { // Sync current head to disk and close. if hf := w.head(); hf != nil { if err := w.flush(); err != nil { return err } // Finish last segment asynchronously to not block the WAL moving along // in the new segment. go func() { off, err := hf.Seek(0, os.SEEK_CUR) if err != nil { level.Error(w.logger).Log("msg", "finish old segment", "segment", hf.Name(), "err", err) } if err := hf.Truncate(off); err != nil { level.Error(w.logger).Log("msg", "finish old segment", "segment", hf.Name(), "err", err) } if err := hf.Sync(); err != nil { level.Error(w.logger).Log("msg", "finish old segment", "segment", hf.Name(), "err", err) } if err := hf.Close(); err != nil { level.Error(w.logger).Log("msg", "finish old segment", "segment", hf.Name(), "err", err) } }() } p, _, err := nextSequenceFile(w.dirFile.Name()) if err != nil { return err } f, err := w.createSegmentFile(p) if err != nil { return err } go func() { if err = w.dirFile.Sync(); err != nil { level.Error(w.logger).Log("msg", "sync WAL directory", "err", err) } }() w.files = append(w.files, newSegmentFile(f)) // TODO(gouthamve): make the buffer size a constant. w.cur = bufio.NewWriterSize(f, 8*1024*1024) w.curN = 8 return nil } func (w *SegmentWAL) head() *segmentFile { if len(w.files) == 0 { return nil } return w.files[len(w.files)-1] } // Sync flushes the changes to disk. func (w *SegmentWAL) Sync() error { var head *segmentFile var err error // Flush the writer and retrieve the reference to the head segment under mutex lock. func() { w.mtx.Lock() defer w.mtx.Unlock() if err = w.flush(); err != nil { return } head = w.head() }() if err != nil { return errors.Wrap(err, "flush buffer") } if head != nil { // But only fsync the head segment after releasing the mutex as it will block on disk I/O. start := time.Now() err := fileutil.Fdatasync(head.File) w.metrics.fsyncDuration.Observe(time.Since(start).Seconds()) return err } return nil } func (w *SegmentWAL) sync() error { if err := w.flush(); err != nil { return err } if w.head() == nil { return nil } start := time.Now() err := fileutil.Fdatasync(w.head().File) w.metrics.fsyncDuration.Observe(time.Since(start).Seconds()) return err } func (w *SegmentWAL) flush() error { if w.cur == nil { return nil } return w.cur.Flush() } func (w *SegmentWAL) run(interval time.Duration) { var tick <-chan time.Time if interval > 0 { ticker := time.NewTicker(interval) defer ticker.Stop() tick = ticker.C } defer close(w.donec) for { select { case <-w.stopc: return case <-tick: if err := w.Sync(); err != nil { level.Error(w.logger).Log("msg", "sync failed", "err", err) } } } } // Close syncs all data and closes the underlying resources. func (w *SegmentWAL) Close() error { close(w.stopc) <-w.donec w.mtx.Lock() defer w.mtx.Unlock() if err := w.sync(); err != nil { return err } // On opening, a WAL must be fully consumed once. Afterwards // only the current segment will still be open. if hf := w.head(); hf != nil { return errors.Wrapf(hf.Close(), "closing WAL head %s", hf.Name()) } return nil } const ( minSectorSize = 512 // walPageBytes is the alignment for flushing records to the backing Writer. // It should be a multiple of the minimum sector size so that WAL can safely // distinguish between torn writes and ordinary data corruption. walPageBytes = 16 * minSectorSize ) func (w *SegmentWAL) write(t WALEntryType, flag uint8, buf []byte) error { // Cut to the next segment if the entry exceeds the file size unless it would also // exceed the size of a new segment. // TODO(gouthamve): Add a test for this case where the commit is greater than segmentSize. var ( sz = int64(len(buf)) + 6 newsz = w.curN + sz ) // XXX(fabxc): this currently cuts a new file whenever the WAL was newly opened. // Probably fine in general but may yield a lot of short files in some cases. if w.cur == nil || w.curN > w.segmentSize || newsz > w.segmentSize && sz <= w.segmentSize { if err := w.cut(); err != nil { return err } } n, err := w.writeTo(w.cur, w.crc32, t, flag, buf) w.curN += int64(n) return err } func (w *SegmentWAL) writeTo(wr io.Writer, crc32 hash.Hash, t WALEntryType, flag uint8, buf []byte) (int, error) { if len(buf) == 0 { return 0, nil } crc32.Reset() wr = io.MultiWriter(crc32, wr) var b [6]byte b[0] = byte(t) b[1] = flag binary.BigEndian.PutUint32(b[2:], uint32(len(buf))) n1, err := wr.Write(b[:]) if err != nil { return n1, err } n2, err := wr.Write(buf) if err != nil { return n1 + n2, err } n3, err := wr.Write(crc32.Sum(b[:0])) return n1 + n2 + n3, err } const ( walSeriesSimple = 1 walSamplesSimple = 1 walDeletesSimple = 1 ) func (w *SegmentWAL) encodeSeries(buf *encbuf, series []RefSeries) uint8 { for _, s := range series { buf.putBE64(s.Ref) buf.putUvarint(len(s.Labels)) for _, l := range s.Labels { buf.putUvarintStr(l.Name) buf.putUvarintStr(l.Value) } } return walSeriesSimple } func (w *SegmentWAL) encodeSamples(buf *encbuf, samples []RefSample) uint8 { if len(samples) == 0 { return walSamplesSimple } // Store base timestamp and base reference number of first sample. // All samples encode their timestamp and ref as delta to those. // // TODO(fabxc): optimize for all samples having the same timestamp. first := samples[0] buf.putBE64(first.Ref) buf.putBE64int64(first.T) for _, s := range samples { buf.putVarint64(int64(s.Ref) - int64(first.Ref)) buf.putVarint64(s.T - first.T) buf.putBE64(math.Float64bits(s.V)) } return walSamplesSimple } func (w *SegmentWAL) encodeDeletes(buf *encbuf, stones []Stone) uint8 { for _, s := range stones { for _, iv := range s.intervals { buf.putBE64(s.ref) buf.putVarint64(iv.Mint) buf.putVarint64(iv.Maxt) } } return walDeletesSimple } // walReader decodes and emits write ahead log entries. type walReader struct { logger log.Logger files []*segmentFile cur int buf []byte crc32 hash.Hash32 curType WALEntryType curFlag byte curBuf []byte lastOffset int64 // offset after last successfully read entry err error } func newWALReader(files []*segmentFile, l log.Logger) *walReader { if l == nil { l = log.NewNopLogger() } return &walReader{ logger: l, files: files, buf: make([]byte, 0, 128*4096), crc32: newCRC32(), } } // Err returns the last error the reader encountered. func (r *walReader) Err() error { return r.err } func (r *walReader) Read( seriesf func([]RefSeries), samplesf func([]RefSample), deletesf func([]Stone), ) error { // Concurrency for replaying the WAL is very limited. We at least split out decoding and // processing into separate threads. // Historically, the processing is the bottleneck with reading and decoding using only // 15% of the CPU. var ( seriesPool sync.Pool samplePool sync.Pool deletePool sync.Pool ) donec := make(chan struct{}) datac := make(chan interface{}, 100) go func() { defer close(donec) for x := range datac { switch v := x.(type) { case []RefSeries: if seriesf != nil { seriesf(v) } seriesPool.Put(v[:0]) case []RefSample: if samplesf != nil { samplesf(v) } samplePool.Put(v[:0]) case []Stone: if deletesf != nil { deletesf(v) } deletePool.Put(v[:0]) default: level.Error(r.logger).Log("msg", "unexpected data type") } } }() var err error for r.next() { et, flag, b := r.at() // In decoding below we never return a walCorruptionErr for now. // Those should generally be catched by entry decoding before. switch et { case WALEntrySeries: var series []RefSeries if v := seriesPool.Get(); v == nil { series = make([]RefSeries, 0, 512) } else { series = v.([]RefSeries) } err := r.decodeSeries(flag, b, &series) if err != nil { err = errors.Wrap(err, "decode series entry") break } datac <- series cf := r.current() for _, s := range series { if cf.minSeries > s.Ref { cf.minSeries = s.Ref } } case WALEntrySamples: var samples []RefSample if v := samplePool.Get(); v == nil { samples = make([]RefSample, 0, 512) } else { samples = v.([]RefSample) } err := r.decodeSamples(flag, b, &samples) if err != nil { err = errors.Wrap(err, "decode samples entry") break } datac <- samples // Update the times for the WAL segment file. cf := r.current() for _, s := range samples { if cf.maxTime < s.T { cf.maxTime = s.T } } case WALEntryDeletes: var deletes []Stone if v := deletePool.Get(); v == nil { deletes = make([]Stone, 0, 512) } else { deletes = v.([]Stone) } err := r.decodeDeletes(flag, b, &deletes) if err != nil { err = errors.Wrap(err, "decode delete entry") break } datac <- deletes // Update the times for the WAL segment file. cf := r.current() for _, s := range deletes { for _, iv := range s.intervals { if cf.maxTime < iv.Maxt { cf.maxTime = iv.Maxt } } } } } close(datac) <-donec if err != nil { return err } if r.Err() != nil { return errors.Wrap(r.Err(), "read entry") } return nil } func (r *walReader) at() (WALEntryType, byte, []byte) { return r.curType, r.curFlag, r.curBuf } // next returns decodes the next entry pair and returns true // if it was succesful. func (r *walReader) next() bool { if r.cur >= len(r.files) { return false } cf := r.files[r.cur] // Remember the offset after the last correctly read entry. If the next one // is corrupted, this is where we can safely truncate. r.lastOffset, r.err = cf.Seek(0, os.SEEK_CUR) if r.err != nil { return false } et, flag, b, err := r.entry(cf) // If we reached the end of the reader, advance to the next one // and close. // Do not close on the last one as it will still be appended to. if err == io.EOF { if r.cur == len(r.files)-1 { return false } // Current reader completed, close and move to the next one. if err := cf.Close(); err != nil { r.err = err return false } r.cur++ return r.next() } if err != nil { r.err = err return false } r.curType = et r.curFlag = flag r.curBuf = b return r.err == nil } func (r *walReader) current() *segmentFile { return r.files[r.cur] } // walCorruptionErr is a type wrapper for errors that indicate WAL corruption // and trigger a truncation. type walCorruptionErr struct { err error file int lastOffset int64 } func (e walCorruptionErr) Error() string { return fmt.Sprintf("%s ", e.err, e.file, e.lastOffset) } func (r *walReader) corruptionErr(s string, args ...interface{}) error { return walCorruptionErr{ err: errors.Errorf(s, args...), file: r.cur, lastOffset: r.lastOffset, } } func (r *walReader) entry(cr io.Reader) (WALEntryType, byte, []byte, error) { r.crc32.Reset() tr := io.TeeReader(cr, r.crc32) b := make([]byte, 6) if n, err := tr.Read(b); err != nil { return 0, 0, nil, err } else if n != 6 { return 0, 0, nil, r.corruptionErr("invalid entry header size %d", n) } var ( etype = WALEntryType(b[0]) flag = b[1] length = int(binary.BigEndian.Uint32(b[2:])) ) // Exit if we reached pre-allocated space. if etype == 0 { return 0, 0, nil, io.EOF } if etype != WALEntrySeries && etype != WALEntrySamples && etype != WALEntryDeletes { return 0, 0, nil, r.corruptionErr("invalid entry type %d", etype) } if length > len(r.buf) { r.buf = make([]byte, length) } buf := r.buf[:length] if n, err := tr.Read(buf); err != nil { return 0, 0, nil, err } else if n != length { return 0, 0, nil, r.corruptionErr("invalid entry body size %d", n) } if n, err := cr.Read(b[:4]); err != nil { return 0, 0, nil, err } else if n != 4 { return 0, 0, nil, r.corruptionErr("invalid checksum length %d", n) } if exp, has := binary.BigEndian.Uint32(b[:4]), r.crc32.Sum32(); has != exp { return 0, 0, nil, r.corruptionErr("unexpected CRC32 checksum %x, want %x", has, exp) } return etype, flag, buf, nil } func (r *walReader) decodeSeries(flag byte, b []byte, res *[]RefSeries) error { dec := decbuf{b: b} for len(dec.b) > 0 && dec.err() == nil { ref := dec.be64() lset := make(labels.Labels, dec.uvarint()) for i := range lset { lset[i].Name = dec.uvarintStr() lset[i].Value = dec.uvarintStr() } sort.Sort(lset) *res = append(*res, RefSeries{ Ref: ref, Labels: lset, }) } if dec.err() != nil { return dec.err() } if len(dec.b) > 0 { return errors.Errorf("unexpected %d bytes left in entry", len(dec.b)) } return nil } func (r *walReader) decodeSamples(flag byte, b []byte, res *[]RefSample) error { if len(b) == 0 { return nil } dec := decbuf{b: b} var ( baseRef = dec.be64() baseTime = dec.be64int64() ) for len(dec.b) > 0 && dec.err() == nil { dref := dec.varint64() dtime := dec.varint64() val := dec.be64() *res = append(*res, RefSample{ Ref: uint64(int64(baseRef) + dref), T: baseTime + dtime, V: math.Float64frombits(val), }) } if dec.err() != nil { return errors.Wrapf(dec.err(), "decode error after %d samples", len(*res)) } if len(dec.b) > 0 { return errors.Errorf("unexpected %d bytes left in entry", len(dec.b)) } return nil } func (r *walReader) decodeDeletes(flag byte, b []byte, res *[]Stone) error { dec := &decbuf{b: b} for dec.len() > 0 && dec.err() == nil { *res = append(*res, Stone{ ref: dec.be64(), intervals: Intervals{ {Mint: dec.varint64(), Maxt: dec.varint64()}, }, }) } if dec.err() != nil { return dec.err() } if len(dec.b) > 0 { return errors.Errorf("unexpected %d bytes left in entry", len(dec.b)) } return nil }