prometheus/docs/storage.md

149 lines
9.2 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

---
title: Storage
sort_rank: 5
---
# Storage
Prometheus includes a local on-disk time series database, but also optionally integrates with remote storage systems.
## Local storage
Prometheus's local time series database stores data in a custom, highly efficient format on local storage.
### On-disk layout
Ingested samples are grouped into blocks of two hours. Each two-hour block consists of a directory containing one or more chunk files that contain all time series samples for that window of time, as well as a metadata file and index file (which indexes metric names and labels to time series in the chunk files). When series are deleted via the API, deletion records are stored in separate tombstone files (instead of deleting the data immediately from the chunk files).
The current block for incoming samples is kept in memory and is not fully
persisted. It is secured against crashes by a write-ahead log (WAL) that can be
replayed when the Prometheus server restarts. Write-ahead log files are stored
in the `wal` directory in 128MB segments. These files contain raw data that
has not yet been compacted; thus they are significantly larger than regular block
files. Prometheus will retain a minimum of three write-ahead log files.
High-traffic servers may retain more than three WAL files in order to to keep at
least two hours of raw data.
A Prometheus server's data directory looks something like this:
```
./data
├── 01BKGV7JBM69T2G1BGBGM6KB12
│   └── meta.json
├── 01BKGTZQ1SYQJTR4PB43C8PD98
│   ├── chunks
│   │ └── 000001
│   ├── tombstones
│   ├── index
│   └── meta.json
├── 01BKGTZQ1HHWHV8FBJXW1Y3W0K
│   └── meta.json
├── 01BKGV7JC0RY8A6MACW02A2PJD
│  ├── chunks
│  │ └── 000001
│  ├── tombstones
│  ├── index
│  └── meta.json
├── chunks_head
│  └── 000001
└── wal
  ├── 000000002
  └── checkpoint.00000001
   └── 00000000
```
Note that a limitation of local storage is that it is not clustered or
replicated. Thus, it is not arbitrarily scalable or durable in the face of
drive or node outages and should be managed like any other single node
database. The use of RAID is suggested for storage availability, and [snapshots](querying/api.md#snapshot)
are recommended for backups. With proper
architecture, it is possible to retain years of data in local storage.
Alternatively, external storage may be used via the [remote read/write APIs](https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage). Careful evaluation is required for these systems as they vary greatly in durability, performance, and efficiency.
For further details on file format, see [TSDB format](/tsdb/docs/format/README.md).
## Compaction
The initial two-hour blocks are eventually compacted into longer blocks in the background.
Compaction will create larger blocks containing data spanning up to 10% of the retention time, or 31 days, whichever is smaller.
## Operational aspects
Prometheus has several flags that configure local storage. The most important are:
* `--storage.tsdb.path`: Where Prometheus writes its database. Defaults to `data/`.
* `--storage.tsdb.retention.time`: When to remove old data. Defaults to `15d`. Overrides `storage.tsdb.retention` if this flag is set to anything other than default.
* `--storage.tsdb.retention.size`: [EXPERIMENTAL] The maximum number of bytes of storage blocks to retain. The oldest data will be removed first. Defaults to `0` or disabled. This flag is experimental and may change in future releases. Units supported: B, KB, MB, GB, TB, PB, EB. Ex: "512MB"
* `--storage.tsdb.retention`: Deprecated in favor of `storage.tsdb.retention.time`.
* `--storage.tsdb.wal-compression`: Enables compression of the write-ahead log (WAL). Depending on your data, you can expect the WAL size to be halved with little extra cpu load. This flag was introduced in 2.11.0 and enabled by default in 2.20.0. Note that once enabled, downgrading Prometheus to a version below 2.11.0 will require deleting the WAL.
Prometheus stores an average of only 1-2 bytes per sample. Thus, to plan the capacity of a Prometheus server, you can use the rough formula:
```
needed_disk_space = retention_time_seconds * ingested_samples_per_second * bytes_per_sample
```
To lower the rate of ingested samples, you can either reduce the number of time series you scrape (fewer targets or fewer series per target), or you can increase the scrape interval. However, reducing the number of series is likely more effective, due to compression of samples within a series.
If your local storage becomes corrupted for whatever reason, the best
strategy to address the problem is to shut down Prometheus then remove the
entire storage directory. You can also try removing individual block directories,
or the WAL directory to resolve the problem. Note that this means losing
approximately two hours data per block directory. Again, Prometheus's local
storage is not intended to be durable long-term storage; external solutions
offer extended retention and data durability.
CAUTION: Non-POSIX compliant filesystems are not supported for Prometheus' local storage as unrecoverable corruptions may happen. NFS filesystems (including AWS's EFS) are not supported. NFS could be POSIX-compliant, but most implementations are not. It is strongly recommended to use a local filesystem for reliability.
If both time and size retention policies are specified, whichever triggers first
will be used.
Expired block cleanup happens in the background. It may take up to two hours to remove expired blocks. Blocks must be fully expired before they are removed.
## Remote storage integrations
Prometheus's local storage is limited to a single node's scalability and durability.
Instead of trying to solve clustered storage in Prometheus itself, Prometheus offers
a set of interfaces that allow integrating with remote storage systems.
### Overview
Prometheus integrates with remote storage systems in two ways:
* Prometheus can write samples that it ingests to a remote URL in a standardized format.
* Prometheus can read (back) sample data from a remote URL in a standardized format.
![Remote read and write architecture](images/remote_integrations.png)
The read and write protocols both use a snappy-compressed protocol buffer encoding over HTTP. The protocols are not considered as stable APIs yet and may change to use gRPC over HTTP/2 in the future, when all hops between Prometheus and the remote storage can safely be assumed to support HTTP/2.
For details on configuring remote storage integrations in Prometheus, see the [remote write](configuration/configuration.md#remote_write) and [remote read](configuration/configuration.md#remote_read) sections of the Prometheus configuration documentation.
For details on the request and response messages, see the [remote storage protocol buffer definitions](https://github.com/prometheus/prometheus/blob/master/prompb/remote.proto).
Note that on the read path, Prometheus only fetches raw series data for a set of label selectors and time ranges from the remote end. All PromQL evaluation on the raw data still happens in Prometheus itself. This means that remote read queries have some scalability limit, since all necessary data needs to be loaded into the querying Prometheus server first and then processed there. However, supporting fully distributed evaluation of PromQL was deemed infeasible for the time being.
### Existing integrations
To learn more about existing integrations with remote storage systems, see the [Integrations documentation](https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage).
## Backfilling from OpenMetrics format
### Overview
If a user wants to create blocks into the TSDB from data that is in [OpenMetrics](https://openmetrics.io/) format, they can do so using backfilling. However, they should be careful and note that it is not safe to backfill data from the last 3 hours (the current head block) as this time range may overlap with the current head block Prometheus is still mutating. Backfilling will create new TSDB blocks, each containing two hours of metrics data. This limits the memory requirements of block creation. Compacting the two hour blocks into larger blocks is later done by the Prometheus server itself.
A typical use case is to migrate metrics data from a different monitoring system or time-series database to Prometheus. To do so, the user must first convert the source data into [OpenMetrics](https://openmetrics.io/) format, which is the input format for the backfilling as described below.
### Usage
Backfilling can be used via the Promtool command line. Promtool will write the blocks to a directory. By default this output directory is ./data/, you can change it by using the name of the desired output directory as an optional argument in the sub-command.
```
promtool tsdb create-blocks-from openmetrics <input file> [<output directory>]
```
After the creation of the blocks, move it to the data directory of Prometheus. If there is an overlap with the existing blocks in Prometheus, the flag `--storage.tsdb.allow-overlapping-blocks` needs to be set. Note that any backfilled data is subject to the retention configured for your Prometheus server (by time or size).