Browse Source

Reduce chunk write queue memory usage 2 (#10874)

* Job queue

This PR reimplements chan chunkWriteJob with custom buffered queue that should use less memory, because it doesn't preallocate entire buffer for maximum queue size at once. Instead it allocates individual "segments" with smaller size.

As elements are added to the queue, they fill individual segments. When elements are removed from the queue (and segments), empty segments can be thrown away. This doesn't change memory usage of the queue when it's full, but should decrease its memory footprint when it's empty (queue will keep max 1 segment in such case).

Signed-off-by: Peter Štibraný <pstibrany@gmail.com>

* Modify test to work with low resolution timer.

Signed-off-by: Peter Štibraný <pstibrany@gmail.com>

* Improve comments.

Signed-off-by: Peter Štibraný <pstibrany@gmail.com>
pull/10930/head
Peter Štibraný 2 years ago committed by GitHub
parent
commit
ffc60d8397
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 34
      tsdb/chunks/chunk_write_queue.go
  2. 141
      tsdb/chunks/queue.go
  3. 323
      tsdb/chunks/queue_test.go

34
tsdb/chunks/chunk_write_queue.go

@ -24,11 +24,15 @@ import (
) )
const ( const (
// Minimum recorded peak since since the last shrinking of chunkWriteQueue.chunkrefMap to shrink it again. // Minimum recorded peak since the last shrinking of chunkWriteQueue.chunkrefMap to shrink it again.
chunkRefMapShrinkThreshold = 1000 chunkRefMapShrinkThreshold = 1000
// Minimum interval between shrinking of chunkWriteQueue.chunkRefMap. // Minimum interval between shrinking of chunkWriteQueue.chunkRefMap.
chunkRefMapMinShrinkInterval = 10 * time.Minute chunkRefMapMinShrinkInterval = 10 * time.Minute
// Maximum size of segment used by job queue (number of elements). With chunkWriteJob being 64 bytes,
// this will use ~512 KiB for empty queue.
maxChunkQueueSegmentSize = 8192
) )
type chunkWriteJob struct { type chunkWriteJob struct {
@ -45,7 +49,7 @@ type chunkWriteJob struct {
// Chunks that shall be written get added to the queue, which is consumed asynchronously. // Chunks that shall be written get added to the queue, which is consumed asynchronously.
// Adding jobs to the queue is non-blocking as long as the queue isn't full. // Adding jobs to the queue is non-blocking as long as the queue isn't full.
type chunkWriteQueue struct { type chunkWriteQueue struct {
jobs chan chunkWriteJob jobs *writeJobQueue
chunkRefMapMtx sync.RWMutex chunkRefMapMtx sync.RWMutex
chunkRefMap map[ChunkDiskMapperRef]chunkenc.Chunk chunkRefMap map[ChunkDiskMapperRef]chunkenc.Chunk
@ -83,8 +87,13 @@ func newChunkWriteQueue(reg prometheus.Registerer, size int, writeChunk writeChu
[]string{"operation"}, []string{"operation"},
) )
segmentSize := size
if segmentSize > maxChunkQueueSegmentSize {
segmentSize = maxChunkQueueSegmentSize
}
q := &chunkWriteQueue{ q := &chunkWriteQueue{
jobs: make(chan chunkWriteJob, size), jobs: newWriteJobQueue(size, segmentSize),
chunkRefMap: make(map[ChunkDiskMapperRef]chunkenc.Chunk), chunkRefMap: make(map[ChunkDiskMapperRef]chunkenc.Chunk),
chunkRefMapLastShrink: time.Now(), chunkRefMapLastShrink: time.Now(),
writeChunk: writeChunk, writeChunk: writeChunk,
@ -108,7 +117,12 @@ func (c *chunkWriteQueue) start() {
go func() { go func() {
defer c.workerWg.Done() defer c.workerWg.Done()
for job := range c.jobs { for {
job, ok := c.jobs.pop()
if !ok {
return
}
c.processJob(job) c.processJob(job)
} }
}() }()
@ -191,7 +205,13 @@ func (c *chunkWriteQueue) addJob(job chunkWriteJob) (err error) {
} }
c.chunkRefMapMtx.Unlock() c.chunkRefMapMtx.Unlock()
c.jobs <- job if ok := c.jobs.push(job); !ok {
c.chunkRefMapMtx.Lock()
delete(c.chunkRefMap, job.ref)
c.chunkRefMapMtx.Unlock()
return errors.New("queue is closed")
}
return nil return nil
} }
@ -218,7 +238,7 @@ func (c *chunkWriteQueue) stop() {
c.isRunning = false c.isRunning = false
close(c.jobs) c.jobs.close()
c.workerWg.Wait() c.workerWg.Wait()
} }
@ -230,7 +250,7 @@ func (c *chunkWriteQueue) queueIsEmpty() bool {
func (c *chunkWriteQueue) queueIsFull() bool { func (c *chunkWriteQueue) queueIsFull() bool {
// When the queue is full and blocked on the writer the chunkRefMap has one more job than the cap of the jobCh // When the queue is full and blocked on the writer the chunkRefMap has one more job than the cap of the jobCh
// because one job is currently being processed and blocked in the writer. // because one job is currently being processed and blocked in the writer.
return c.queueSize() == cap(c.jobs)+1 return c.queueSize() == c.jobs.maxSize+1
} }
func (c *chunkWriteQueue) queueSize() int { func (c *chunkWriteQueue) queueSize() int {

141
tsdb/chunks/queue.go

@ -0,0 +1,141 @@
// Copyright 2022 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package chunks
import "sync"
// writeJobQueue is similar to buffered channel of chunkWriteJob, but manages its own buffers
// to avoid using a lot of memory when it's empty. It does that by storing elements into segments
// of equal size (segmentSize). When segment is not used anymore, reference to it are removed,
// so it can be treated as a garbage.
type writeJobQueue struct {
maxSize int
segmentSize int
mtx sync.Mutex // protects all following variables
pushed, popped *sync.Cond // signalled when something is pushed into the queue or popped from it
first, last *writeJobQueueSegment // pointer to first and last segment, if any
size int // total size of the queue
closed bool // after closing the queue, nothing can be pushed to it
}
type writeJobQueueSegment struct {
segment []chunkWriteJob
nextRead, nextWrite int // index of next read and next write in this segment.
nextSegment *writeJobQueueSegment // next segment, if any
}
func newWriteJobQueue(maxSize, segmentSize int) *writeJobQueue {
if maxSize <= 0 || segmentSize <= 0 {
panic("invalid queue")
}
q := &writeJobQueue{
maxSize: maxSize,
segmentSize: segmentSize,
}
q.pushed = sync.NewCond(&q.mtx)
q.popped = sync.NewCond(&q.mtx)
return q
}
func (q *writeJobQueue) close() {
q.mtx.Lock()
defer q.mtx.Unlock()
q.closed = true
// Unblock all blocked goroutines.
q.pushed.Broadcast()
q.popped.Broadcast()
}
// push blocks until there is space available in the queue, and then adds job to the queue.
// If queue is closed or gets closed while waiting for space, push returns false.
func (q *writeJobQueue) push(job chunkWriteJob) bool {
q.mtx.Lock()
defer q.mtx.Unlock()
// Wait until queue has more space or is closed.
for !q.closed && q.size >= q.maxSize {
q.popped.Wait()
}
if q.closed {
return false
}
// Check if this segment has more space for writing, and create new one if not.
if q.last == nil || q.last.nextWrite >= q.segmentSize {
prevLast := q.last
q.last = &writeJobQueueSegment{
segment: make([]chunkWriteJob, q.segmentSize),
}
if prevLast != nil {
prevLast.nextSegment = q.last
}
if q.first == nil {
q.first = q.last
}
}
q.last.segment[q.last.nextWrite] = job
q.last.nextWrite++
q.size++
q.pushed.Signal()
return true
}
// pop returns first job from the queue, and true.
// If queue is empty, pop blocks until there is a job (returns true), or until queue is closed (returns false).
// If queue was already closed, pop first returns all remaining elements from the queue (with true value), and only then returns false.
func (q *writeJobQueue) pop() (chunkWriteJob, bool) {
q.mtx.Lock()
defer q.mtx.Unlock()
// wait until something is pushed to the queue, or queue is closed.
for q.size == 0 {
if q.closed {
return chunkWriteJob{}, false
}
q.pushed.Wait()
}
res := q.first.segment[q.first.nextRead]
q.first.segment[q.first.nextRead] = chunkWriteJob{} // clear just-read element
q.first.nextRead++
q.size--
// If we have read all possible elements from first segment, we can drop it.
if q.first.nextRead >= q.segmentSize {
q.first = q.first.nextSegment
if q.first == nil {
q.last = nil
}
}
q.popped.Signal()
return res, true
}
// length returns number of all jobs in the queue.
func (q *writeJobQueue) length() int {
q.mtx.Lock()
defer q.mtx.Unlock()
return q.size
}

323
tsdb/chunks/queue_test.go

@ -0,0 +1,323 @@
// Copyright 2022 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package chunks
import (
"math/rand"
"sync"
"testing"
"time"
"github.com/stretchr/testify/require"
"go.uber.org/atomic"
)
func (q *writeJobQueue) assertInvariants(t *testing.T) {
q.mtx.Lock()
defer q.mtx.Unlock()
totalSize := 0
for s := q.first; s != nil; s = s.nextSegment {
require.True(t, s.segment != nil)
// Next read index is lower or equal than next write index (we cannot past written jobs)
require.True(t, s.nextRead <= s.nextWrite)
// Number of unread elements in this segment.
totalSize += s.nextWrite - s.nextRead
// First segment can be partially read, other segments were not read yet.
if s == q.first {
require.True(t, s.nextRead >= 0)
} else {
require.True(t, s.nextRead == 0)
}
// If first shard is empty (everything was read from it already), it must have extra capacity for
// additional elements, otherwise it would have been removed.
if s == q.first && s.nextRead == s.nextWrite {
require.True(t, s.nextWrite < len(s.segment))
}
// Segments in the middle are full.
if s != q.first && s != q.last {
require.True(t, s.nextWrite == len(s.segment))
}
// Last segment must have at least one element, or we wouldn't have created it.
require.True(t, s.nextWrite > 0)
}
require.Equal(t, q.size, totalSize)
}
func TestQueuePushPopSingleGoroutine(t *testing.T) {
seed := time.Now().UnixNano()
t.Log("seed:", seed)
r := rand.New(rand.NewSource(seed))
const maxSize = 500
const maxIters = 50
for max := 1; max < maxSize; max++ {
queue := newWriteJobQueue(max, 1+(r.Int()%max))
elements := 0 // total elements in the queue
lastWriteID := 0
lastReadID := 0
for iter := 0; iter < maxIters; iter++ {
if elements < max {
toWrite := r.Int() % (max - elements)
if toWrite == 0 {
toWrite = 1
}
for i := 0; i < toWrite; i++ {
lastWriteID++
require.True(t, queue.push(chunkWriteJob{seriesRef: HeadSeriesRef(lastWriteID)}))
elements++
}
}
if elements > 0 {
toRead := r.Int() % elements
if toRead == 0 {
toRead = 1
}
for i := 0; i < toRead; i++ {
lastReadID++
j, b := queue.pop()
require.True(t, b)
require.Equal(t, HeadSeriesRef(lastReadID), j.seriesRef)
elements--
}
}
require.Equal(t, elements, queue.length())
queue.assertInvariants(t)
}
}
}
func TestQueuePushBlocksOnFullQueue(t *testing.T) {
queue := newWriteJobQueue(5, 5)
pushTime := make(chan time.Time)
go func() {
require.True(t, queue.push(chunkWriteJob{seriesRef: 1}))
require.True(t, queue.push(chunkWriteJob{seriesRef: 2}))
require.True(t, queue.push(chunkWriteJob{seriesRef: 3}))
require.True(t, queue.push(chunkWriteJob{seriesRef: 4}))
require.True(t, queue.push(chunkWriteJob{seriesRef: 5}))
pushTime <- time.Now()
// This will block
require.True(t, queue.push(chunkWriteJob{seriesRef: 6}))
pushTime <- time.Now()
}()
timeBeforePush := <-pushTime
delay := 100 * time.Millisecond
select {
case <-time.After(delay):
// ok
case <-pushTime:
require.Fail(t, "didn't expect another push to proceed")
}
popTime := time.Now()
j, b := queue.pop()
require.True(t, b)
require.Equal(t, HeadSeriesRef(1), j.seriesRef)
timeAfterPush := <-pushTime
require.GreaterOrEqual(t, timeAfterPush.Sub(popTime), time.Duration(0))
require.GreaterOrEqual(t, timeAfterPush.Sub(timeBeforePush), delay)
}
func TestQueuePopBlocksOnEmptyQueue(t *testing.T) {
queue := newWriteJobQueue(5, 5)
popTime := make(chan time.Time)
go func() {
j, b := queue.pop()
require.True(t, b)
require.Equal(t, HeadSeriesRef(1), j.seriesRef)
popTime <- time.Now()
// This will block
j, b = queue.pop()
require.True(t, b)
require.Equal(t, HeadSeriesRef(2), j.seriesRef)
popTime <- time.Now()
}()
queue.push(chunkWriteJob{seriesRef: 1})
timeBeforePop := <-popTime
delay := 100 * time.Millisecond
select {
case <-time.After(delay):
// ok
case <-popTime:
require.Fail(t, "didn't expect another pop to proceed")
}
pushTime := time.Now()
require.True(t, queue.push(chunkWriteJob{seriesRef: 2}))
timeAfterPop := <-popTime
require.GreaterOrEqual(t, timeAfterPop.Sub(pushTime), time.Duration(0))
require.Greater(t, timeAfterPop.Sub(timeBeforePop), delay)
}
func TestQueuePopUnblocksOnClose(t *testing.T) {
queue := newWriteJobQueue(5, 5)
popTime := make(chan time.Time)
go func() {
j, b := queue.pop()
require.True(t, b)
require.Equal(t, HeadSeriesRef(1), j.seriesRef)
popTime <- time.Now()
// This will block until queue is closed.
j, b = queue.pop()
require.False(t, b)
popTime <- time.Now()
}()
queue.push(chunkWriteJob{seriesRef: 1})
timeBeforePop := <-popTime
delay := 100 * time.Millisecond
select {
case <-time.After(delay):
// ok
case <-popTime:
require.Fail(t, "didn't expect another pop to proceed")
}
closeTime := time.Now()
queue.close()
timeAfterPop := <-popTime
require.GreaterOrEqual(t, timeAfterPop.Sub(closeTime), time.Duration(0))
require.GreaterOrEqual(t, timeAfterPop.Sub(timeBeforePop), delay)
}
func TestQueuePopAfterCloseReturnsAllElements(t *testing.T) {
const count = 10
queue := newWriteJobQueue(count, count)
for i := 0; i < count; i++ {
require.True(t, queue.push(chunkWriteJob{seriesRef: HeadSeriesRef(i)}))
}
// close the queue before popping all elements.
queue.close()
// No more pushing allowed after close.
require.False(t, queue.push(chunkWriteJob{seriesRef: HeadSeriesRef(11111)}))
// Verify that we can still read all pushed elements.
for i := 0; i < count; i++ {
j, b := queue.pop()
require.True(t, b)
require.Equal(t, HeadSeriesRef(i), j.seriesRef)
}
_, b := queue.pop()
require.False(t, b)
}
func TestQueuePushPopManyGoroutines(t *testing.T) {
const readGoroutines = 5
const writeGoroutines = 10
const writes = 500
queue := newWriteJobQueue(1024, 64)
// Reading goroutine
refsMx := sync.Mutex{}
refs := map[HeadSeriesRef]bool{}
readersWG := sync.WaitGroup{}
for i := 0; i < readGoroutines; i++ {
readersWG.Add(1)
go func() {
defer readersWG.Done()
for j, ok := queue.pop(); ok; j, ok = queue.pop() {
refsMx.Lock()
refs[j.seriesRef] = true
refsMx.Unlock()
}
}()
}
id := atomic.Uint64{}
writersWG := sync.WaitGroup{}
for i := 0; i < writeGoroutines; i++ {
writersWG.Add(1)
go func() {
defer writersWG.Done()
for i := 0; i < writes; i++ {
ref := id.Inc()
require.True(t, queue.push(chunkWriteJob{seriesRef: HeadSeriesRef(ref)}))
}
}()
}
// Wait until all writes are done.
writersWG.Wait()
// Close the queue and wait for reading to be done.
queue.close()
readersWG.Wait()
// Check if we have all expected values
require.Equal(t, writeGoroutines*writes, len(refs))
}
func TestQueueSegmentIsKeptEvenIfEmpty(t *testing.T) {
queue := newWriteJobQueue(1024, 64)
require.True(t, queue.push(chunkWriteJob{seriesRef: 1}))
_, b := queue.pop()
require.True(t, b)
require.NotNil(t, queue.first)
require.Equal(t, 1, queue.first.nextRead)
require.Equal(t, 1, queue.first.nextWrite)
}
Loading…
Cancel
Save