You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
prometheus/head.go

1326 lines
31 KiB

// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tsdb
import (
"math"
"runtime"
"sort"
"sync"
"sync/atomic"
"time"
"github.com/go-kit/kit/log"
"github.com/go-kit/kit/log/level"
"github.com/pkg/errors"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/tsdb/chunks"
"github.com/prometheus/tsdb/labels"
)
var (
// ErrNotFound is returned if a looked up resource was not found.
ErrNotFound = errors.Errorf("not found")
// ErrOutOfOrderSample is returned if an appended sample has a
// timestamp larger than the most recent sample.
ErrOutOfOrderSample = errors.New("out of order sample")
// ErrAmendSample is returned if an appended sample has the same timestamp
// as the most recent sample but a different value.
ErrAmendSample = errors.New("amending sample")
// ErrOutOfBounds is returned if an appended sample is out of the
// writable time range.
ErrOutOfBounds = errors.New("out of bounds")
)
// Head handles reads and writes of time series data within a time window.
type Head struct {
chunkRange int64
metrics *headMetrics
wal WAL
logger log.Logger
appendPool sync.Pool
minTime, maxTime int64
lastSeriesID uint64
// All series addressable by their ID or hash.
series *stripeSeries
symMtx sync.RWMutex
symbols map[string]struct{}
values map[string]stringset // label names to possible values
postings *memPostings // postings lists for terms
tombstones tombstoneReader
}
type headMetrics struct {
activeAppenders prometheus.Gauge
series prometheus.Gauge
seriesCreated prometheus.Counter
seriesRemoved prometheus.Counter
seriesNotFound prometheus.Counter
chunks prometheus.Gauge
chunksCreated prometheus.Gauge
chunksRemoved prometheus.Gauge
gcDuration prometheus.Summary
minTime prometheus.GaugeFunc
maxTime prometheus.GaugeFunc
samplesAppended prometheus.Counter
walTruncateDuration prometheus.Summary
}
func newHeadMetrics(h *Head, r prometheus.Registerer) *headMetrics {
m := &headMetrics{}
m.activeAppenders = prometheus.NewGauge(prometheus.GaugeOpts{
Name: "prometheus_tsdb_head_active_appenders",
Help: "Number of currently active appender transactions",
})
m.series = prometheus.NewGauge(prometheus.GaugeOpts{
Name: "prometheus_tsdb_head_series",
Help: "Total number of series in the head block.",
})
m.seriesCreated = prometheus.NewGauge(prometheus.GaugeOpts{
Name: "prometheus_tsdb_head_series_created_total",
Help: "Total number of series created in the head",
})
m.seriesRemoved = prometheus.NewGauge(prometheus.GaugeOpts{
Name: "prometheus_tsdb_head_series_removed_total",
Help: "Total number of series removed in the head",
})
m.seriesNotFound = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_head_series_not_found",
Help: "Total number of requests for series that were not found.",
})
m.chunks = prometheus.NewGauge(prometheus.GaugeOpts{
Name: "prometheus_tsdb_head_chunks",
Help: "Total number of chunks in the head block.",
})
m.chunksCreated = prometheus.NewGauge(prometheus.GaugeOpts{
Name: "prometheus_tsdb_head_chunks_created_total",
Help: "Total number of chunks created in the head",
})
m.chunksRemoved = prometheus.NewGauge(prometheus.GaugeOpts{
Name: "prometheus_tsdb_head_chunks_removed_total",
Help: "Total number of chunks removed in the head",
})
m.gcDuration = prometheus.NewSummary(prometheus.SummaryOpts{
Name: "prometheus_tsdb_head_gc_duration_seconds",
Help: "Runtime of garbage collection in the head block.",
})
m.maxTime = prometheus.NewGaugeFunc(prometheus.GaugeOpts{
Name: "prometheus_tsdb_head_max_time",
Help: "Maximum timestamp of the head block.",
}, func() float64 {
return float64(h.MaxTime())
})
m.minTime = prometheus.NewGaugeFunc(prometheus.GaugeOpts{
Name: "prometheus_tsdb_head_min_time",
Help: "Minimum time bound of the head block.",
}, func() float64 {
return float64(h.MinTime())
})
m.walTruncateDuration = prometheus.NewSummary(prometheus.SummaryOpts{
Name: "prometheus_tsdb_wal_truncate_duration_seconds",
Help: "Duration of WAL truncation.",
})
m.samplesAppended = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_head_samples_appended_total",
Help: "Total number of appended sampledb.",
})
if r != nil {
r.MustRegister(
m.activeAppenders,
m.chunks,
m.chunksCreated,
m.chunksRemoved,
m.series,
m.seriesCreated,
m.seriesRemoved,
m.seriesNotFound,
m.minTime,
m.maxTime,
m.gcDuration,
m.walTruncateDuration,
m.samplesAppended,
)
}
return m
}
// NewHead opens the head block in dir.
func NewHead(r prometheus.Registerer, l log.Logger, wal WAL, chunkRange int64) (*Head, error) {
if l == nil {
l = log.NewNopLogger()
}
if wal == nil {
wal = NopWAL()
}
if chunkRange < 1 {
return nil, errors.Errorf("invalid chunk range %d", chunkRange)
}
h := &Head{
wal: wal,
logger: l,
chunkRange: chunkRange,
minTime: math.MinInt64,
maxTime: math.MinInt64,
series: newStripeSeries(),
values: map[string]stringset{},
symbols: map[string]struct{}{},
postings: newUnorderedMemPostings(),
tombstones: newEmptyTombstoneReader(),
8 years ago
}
h.metrics = newHeadMetrics(h, r)
return h, nil
}
// processWALSamples adds a partition of samples it receives to the head and passes
// them on to other workers.
// Samples before the mint timestamp are discarded.
func (h *Head) processWALSamples(
mint int64,
partition, total uint64,
input <-chan []RefSample, output chan<- []RefSample,
) (unknownRefs uint64) {
defer close(output)
for samples := range input {
for _, s := range samples {
if s.T < mint || s.Ref%total != partition {
continue
}
ms := h.series.getByID(s.Ref)
if ms == nil {
unknownRefs++
continue
}
_, chunkCreated := ms.append(s.T, s.V)
if chunkCreated {
h.metrics.chunksCreated.Inc()
h.metrics.chunks.Inc()
}
}
output <- samples
}
return unknownRefs
}
// ReadWAL initializes the head by consuming the write ahead log.
func (h *Head) ReadWAL() error {
defer h.postings.ensureOrder()
r := h.wal.Reader()
mint := h.MinTime()
// Track number of samples that referenced a series we don't know about
// for error reporting.
var unknownRefs uint64
// Start workers that each process samples for a partition of the series ID space.
// They are connected through a ring of channels which ensures that all sample batches
// read from the WAL are processed in order.
var (
wg sync.WaitGroup
n = runtime.GOMAXPROCS(0)
firstInput = make(chan []RefSample, 300)
input = firstInput
)
wg.Add(n)
for i := 0; i < n; i++ {
output := make(chan []RefSample, 300)
go func(i int, input <-chan []RefSample, output chan<- []RefSample) {
unknown := h.processWALSamples(mint, uint64(i), uint64(n), input, output)
atomic.AddUint64(&unknownRefs, unknown)
wg.Done()
}(i, input, output)
// The output feeds the next worker goroutine. For the last worker,
// it feeds the initial input again to reuse the RefSample slices.
input = output
}
// TODO(fabxc): series entries spread between samples can starve the sample workers.
// Even with bufferd channels, this can impact startup time with lots of series churn.
// We must not pralellize series creation itself but could make the indexing asynchronous.
seriesFunc := func(series []RefSeries) {
for _, s := range series {
h.getOrCreateWithID(s.Ref, s.Labels.Hash(), s.Labels)
if h.lastSeriesID < s.Ref {
h.lastSeriesID = s.Ref
}
}
}
samplesFunc := func(samples []RefSample) {
var buf []RefSample
select {
case buf = <-input:
default:
buf = make([]RefSample, 0, len(samples)*11/10)
}
firstInput <- append(buf[:0], samples...)
}
deletesFunc := func(stones []Stone) {
for _, s := range stones {
for _, itv := range s.intervals {
if itv.Maxt < mint {
continue
}
h.tombstones.add(s.ref, itv)
}
}
}
err := r.Read(seriesFunc, samplesFunc, deletesFunc)
// Signal termination to first worker and wait for last one to close its output channel.
close(firstInput)
for range input {
}
wg.Wait()
if err != nil {
return errors.Wrap(err, "consume WAL")
}
if unknownRefs > 0 {
level.Warn(h.logger).Log("msg", "unknown series references in WAL samples", "count", unknownRefs)
}
return nil
}
// Truncate removes all data before mint from the head block and truncates its WAL.
func (h *Head) Truncate(mint int64) error {
initialize := h.MinTime() == math.MinInt64
if h.MinTime() >= mint {
return nil
}
atomic.StoreInt64(&h.minTime, mint)
// Ensure that max time is at least as high as min time.
for h.MaxTime() < mint {
atomic.CompareAndSwapInt64(&h.maxTime, h.MaxTime(), mint)
}
// This was an initial call to Truncate after loading blocks on startup.
// We haven't read back the WAL yet, so do not attempt to truncate it.
if initialize {
return nil
}
start := time.Now()
h.gc()
level.Info(h.logger).Log("msg", "head GC completed", "duration", time.Since(start))
h.metrics.gcDuration.Observe(time.Since(start).Seconds())
start = time.Now()
keep := func(id uint64) bool {
return h.series.getByID(id) != nil
}
if err := h.wal.Truncate(mint, keep); err == nil {
level.Info(h.logger).Log("msg", "WAL truncation completed", "duration", time.Since(start))
} else {
level.Error(h.logger).Log("msg", "WAL truncation failed", "err", err, "duration", time.Since(start))
}
h.metrics.walTruncateDuration.Observe(time.Since(start).Seconds())
return nil
}
// initTime initializes a head with the first timestamp. This only needs to be called
// for a compltely fresh head with an empty WAL.
// Returns true if the initialization took an effect.
func (h *Head) initTime(t int64) (initialized bool) {
// In the init state, the head has a high timestamp of math.MinInt64.
mint, _ := rangeForTimestamp(t, h.chunkRange)
if !atomic.CompareAndSwapInt64(&h.minTime, math.MinInt64, mint) {
return false
}
// Ensure that max time is initialized to at least the min time we just set.
// Concurrent appenders may already have set it to a higher value.
atomic.CompareAndSwapInt64(&h.maxTime, math.MinInt64, t)
return true
}
type rangeHead struct {
head *Head
mint, maxt int64
}
func (h *rangeHead) Index() (IndexReader, error) {
return h.head.indexRange(h.mint, h.maxt), nil
}
func (h *rangeHead) Chunks() (ChunkReader, error) {
return h.head.chunksRange(h.mint, h.maxt), nil
}
func (h *rangeHead) Tombstones() (TombstoneReader, error) {
return h.head.tombstones, nil
}
// initAppender is a helper to initialize the time bounds of a the head
// upon the first sample it receives.
type initAppender struct {
app Appender
head *Head
}
func (a *initAppender) Add(lset labels.Labels, t int64, v float64) (uint64, error) {
if a.app != nil {
return a.app.Add(lset, t, v)
}
a.head.initTime(t)
a.app = a.head.appender()
return a.app.Add(lset, t, v)
}
func (a *initAppender) AddFast(ref uint64, t int64, v float64) error {
if a.app == nil {
return ErrNotFound
}
return a.app.AddFast(ref, t, v)
}
func (a *initAppender) Commit() error {
if a.app == nil {
return nil
}
return a.app.Commit()
}
func (a *initAppender) Rollback() error {
if a.app == nil {
return nil
}
return a.app.Rollback()
}
// Appender returns a new Appender on the database.
func (h *Head) Appender() Appender {
h.metrics.activeAppenders.Inc()
// The head cache might not have a starting point yet. The init appender
// picks up the first appended timestamp as the base.
if h.MinTime() == math.MinInt64 {
return &initAppender{head: h}
}
return h.appender()
}
func (h *Head) appender() *headAppender {
return &headAppender{
head: h,
mint: h.MaxTime() - h.chunkRange/2,
samples: h.getAppendBuffer(),
highTimestamp: math.MinInt64,
}
}
func (h *Head) getAppendBuffer() []RefSample {
b := h.appendPool.Get()
if b == nil {
return make([]RefSample, 0, 512)
}
return b.([]RefSample)
}
func (h *Head) putAppendBuffer(b []RefSample) {
h.appendPool.Put(b[:0])
}
type headAppender struct {
head *Head
mint int64
series []RefSeries
samples []RefSample
highTimestamp int64
}
func (a *headAppender) Add(lset labels.Labels, t int64, v float64) (uint64, error) {
if t < a.mint {
return 0, ErrOutOfBounds
}
s, created := a.head.getOrCreate(lset.Hash(), lset)
if created {
a.series = append(a.series, RefSeries{
Ref: s.ref,
Labels: lset,
})
}
return s.ref, a.AddFast(s.ref, t, v)
}
func (a *headAppender) AddFast(ref uint64, t int64, v float64) error {
s := a.head.series.getByID(ref)
if s == nil {
return errors.Wrap(ErrNotFound, "unknown series")
}
s.Lock()
err := s.appendable(t, v)
s.Unlock()
if err != nil {
return err
}
if t < a.mint {
return ErrOutOfBounds
}
if t > a.highTimestamp {
a.highTimestamp = t
}
a.samples = append(a.samples, RefSample{
Ref: ref,
T: t,
V: v,
series: s,
})
return nil
}
func (a *headAppender) Commit() error {
defer a.Rollback()
if err := a.head.wal.LogSeries(a.series); err != nil {
return err
}
if err := a.head.wal.LogSamples(a.samples); err != nil {
return errors.Wrap(err, "WAL log samples")
}
total := len(a.samples)
for _, s := range a.samples {
s.series.Lock()
ok, chunkCreated := s.series.append(s.T, s.V)
s.series.Unlock()
if !ok {
total--
}
if chunkCreated {
a.head.metrics.chunks.Inc()
a.head.metrics.chunksCreated.Inc()
}
}
a.head.metrics.samplesAppended.Add(float64(total))
for {
ht := a.head.MaxTime()
if a.highTimestamp <= ht {
break
}
if atomic.CompareAndSwapInt64(&a.head.maxTime, ht, a.highTimestamp) {
break
}
}
return nil
}
func (a *headAppender) Rollback() error {
a.head.metrics.activeAppenders.Dec()
a.head.putAppendBuffer(a.samples)
return nil
}
// Delete all samples in the range of [mint, maxt] for series that satisfy the given
// label matchers.
func (h *Head) Delete(mint, maxt int64, ms ...labels.Matcher) error {
// Do not delete anything beyond the currently valid range.
mint, maxt = clampInterval(mint, maxt, h.MinTime(), h.MaxTime())
ir := h.indexRange(mint, maxt)
pr := newPostingsReader(ir)
p, absent := pr.Select(ms...)
var stones []Stone
Outer:
for p.Next() {
series := h.series.getByID(p.At())
for _, abs := range absent {
if series.lset.Get(abs) != "" {
continue Outer
}
}
// Delete only until the current values and not beyond.
t0, t1 := clampInterval(mint, maxt, series.minTime(), series.maxTime())
stones = append(stones, Stone{p.At(), Intervals{{t0, t1}}})
}
if p.Err() != nil {
return p.Err()
}
if err := h.wal.LogDeletes(stones); err != nil {
return err
}
for _, s := range stones {
h.tombstones.add(s.ref, s.intervals[0])
}
return nil
}
// gc removes data before the minimum timestmap from the head.
func (h *Head) gc() {
// Only data strictly lower than this timestamp must be deleted.
mint := h.MinTime()
// Drop old chunks and remember series IDs and hashes if they can be
// deleted entirely.
deleted, chunksRemoved := h.series.gc(mint)
seriesRemoved := len(deleted)
h.metrics.seriesRemoved.Add(float64(seriesRemoved))
h.metrics.series.Sub(float64(seriesRemoved))
h.metrics.chunksRemoved.Add(float64(chunksRemoved))
h.metrics.chunks.Sub(float64(chunksRemoved))
// Remove deleted series IDs from the postings lists. First do a collection
// run where we rebuild all postings that have something to delete
h.postings.mtx.RLock()
type replEntry struct {
idx int
l []uint64
}
collected := map[labels.Label]replEntry{}
for t, p := range h.postings.m {
repl := replEntry{idx: len(p)}
for i, id := range p {
if _, ok := deleted[id]; ok {
// First ID that got deleted, initialize replacement with
// all remaining IDs so far.
if repl.l == nil {
repl.l = make([]uint64, 0, len(p))
repl.l = append(repl.l, p[:i]...)
}
continue
}
// Only add to the replacement once we know we have to do it.
if repl.l != nil {
repl.l = append(repl.l, id)
}
}
if repl.l != nil {
collected[t] = repl
}
}
h.postings.mtx.RUnlock()
// Replace all postings that have changed. Append all IDs that may have
// been added while we switched locks.
h.postings.mtx.Lock()
for t, repl := range collected {
l := append(repl.l, h.postings.m[t][repl.idx:]...)
if len(l) > 0 {
h.postings.m[t] = l
} else {
delete(h.postings.m, t)
}
}
h.postings.mtx.Unlock()
// Rebuild symbols and label value indices from what is left in the postings terms.
h.postings.mtx.RLock()
symbols := make(map[string]struct{}, len(h.symbols))
values := make(map[string]stringset, len(h.values))
for t := range h.postings.m {
symbols[t.Name] = struct{}{}
symbols[t.Value] = struct{}{}
ss, ok := values[t.Name]
if !ok {
ss = stringset{}
values[t.Name] = ss
}
ss.set(t.Value)
}
h.postings.mtx.RUnlock()
h.symMtx.Lock()
h.symbols = symbols
h.values = values
h.symMtx.Unlock()
}
// Tombstones returns a new reader over the head's tombstones
func (h *Head) Tombstones() (TombstoneReader, error) {
return h.tombstones, nil
}
// Index returns an IndexReader against the block.
func (h *Head) Index() (IndexReader, error) {
return h.indexRange(math.MinInt64, math.MaxInt64), nil
}
func (h *Head) indexRange(mint, maxt int64) *headIndexReader {
if hmin := h.MinTime(); hmin > mint {
mint = hmin
}
return &headIndexReader{head: h, mint: mint, maxt: maxt}
}
// Chunks returns a ChunkReader against the block.
func (h *Head) Chunks() (ChunkReader, error) {
return h.chunksRange(math.MinInt64, math.MaxInt64), nil
}
func (h *Head) chunksRange(mint, maxt int64) *headChunkReader {
if hmin := h.MinTime(); hmin > mint {
mint = hmin
}
return &headChunkReader{head: h, mint: mint, maxt: maxt}
}
// MinTime returns the lowest time bound on visible data in the head.
func (h *Head) MinTime() int64 {
return atomic.LoadInt64(&h.minTime)
}
// MaxTime returns the highest timestamp seen in data of the head.
func (h *Head) MaxTime() int64 {
return atomic.LoadInt64(&h.maxTime)
}
type headChunkReader struct {
head *Head
mint, maxt int64
}
func (h *headChunkReader) Close() error {
return nil
}
// packChunkID packs a seriesID and a chunkID within it into a global 8 byte ID.
// It panicks if the seriesID exceeds 5 bytes or the chunk ID 3 bytes.
func packChunkID(seriesID, chunkID uint64) uint64 {
if seriesID > (1<<40)-1 {
panic("series ID exceeds 5 bytes")
}
if chunkID > (1<<24)-1 {
panic("chunk ID exceeds 3 bytes")
}
return (seriesID << 24) | chunkID
}
func unpackChunkID(id uint64) (seriesID, chunkID uint64) {
return id >> 24, (id << 40) >> 40
}
// Chunk returns the chunk for the reference number.
func (h *headChunkReader) Chunk(ref uint64) (chunks.Chunk, error) {
sid, cid := unpackChunkID(ref)
s := h.head.series.getByID(sid)
s.Lock()
c := s.chunk(int(cid))
mint, maxt := c.minTime, c.maxTime
s.Unlock()
// Do not expose chunks that are outside of the specified range.
if c == nil || !intervalOverlap(mint, maxt, h.mint, h.maxt) {
return nil, ErrNotFound
}
return &safeChunk{
Chunk: c.chunk,
s: s,
cid: int(cid),
}, nil
}
type safeChunk struct {
chunks.Chunk
s *memSeries
cid int
}
func (c *safeChunk) Iterator() chunks.Iterator {
c.s.Lock()
it := c.s.iterator(c.cid)
c.s.Unlock()
return it
}
// func (c *safeChunk) Appender() (chunks.Appender, error) { panic("illegal") }
// func (c *safeChunk) Bytes() []byte { panic("illegal") }
// func (c *safeChunk) Encoding() chunks.Encoding { panic("illegal") }
type headIndexReader struct {
head *Head
mint, maxt int64
}
func (h *headIndexReader) Close() error {
return nil
}
func (h *headIndexReader) Symbols() (map[string]struct{}, error) {
h.head.symMtx.RLock()
defer h.head.symMtx.RUnlock()
res := make(map[string]struct{}, len(h.head.symbols))
for s := range h.head.symbols {
res[s] = struct{}{}
}
return res, nil
}
// LabelValues returns the possible label values
func (h *headIndexReader) LabelValues(names ...string) (StringTuples, error) {
if len(names) != 1 {
return nil, errInvalidSize
}
var sl []string
h.head.symMtx.RLock()
defer h.head.symMtx.RUnlock()
for s := range h.head.values[names[0]] {
sl = append(sl, s)
}
sort.Strings(sl)
return &stringTuples{l: len(names), s: sl}, nil
}
// Postings returns the postings list iterator for the label pair.
func (h *headIndexReader) Postings(name, value string) (Postings, error) {
return h.head.postings.get(name, value), nil
}
func (h *headIndexReader) SortedPostings(p Postings) Postings {
ep := make([]uint64, 0, 128)
for p.Next() {
ep = append(ep, p.At())
}
if err := p.Err(); err != nil {
return errPostings{err: errors.Wrap(err, "expand postings")}
}
sort.Slice(ep, func(i, j int) bool {
a := h.head.series.getByID(ep[i])
b := h.head.series.getByID(ep[j])
if a == nil || b == nil {
level.Debug(h.head.logger).Log("msg", "looked up series not found")
return false
}
return labels.Compare(a.lset, b.lset) < 0
})
return newListPostings(ep)
}
// Series returns the series for the given reference.
func (h *headIndexReader) Series(ref uint64, lbls *labels.Labels, chks *[]ChunkMeta) error {
s := h.head.series.getByID(ref)
if s == nil {
h.head.metrics.seriesNotFound.Inc()
return ErrNotFound
}
*lbls = append((*lbls)[:0], s.lset...)
s.Lock()
defer s.Unlock()
*chks = (*chks)[:0]
for i, c := range s.chunks {
// Do not expose chunks that are outside of the specified range.
if !intervalOverlap(c.minTime, c.maxTime, h.mint, h.maxt) {
continue
}
*chks = append(*chks, ChunkMeta{
MinTime: c.minTime,
MaxTime: c.maxTime,
Ref: packChunkID(s.ref, uint64(s.chunkID(i))),
})
}
return nil
}
func (h *headIndexReader) LabelIndices() ([][]string, error) {
h.head.symMtx.RLock()
defer h.head.symMtx.RUnlock()
res := [][]string{}
for s := range h.head.values {
res = append(res, []string{s})
}
return res, nil
}
func (h *Head) getOrCreate(hash uint64, lset labels.Labels) (*memSeries, bool) {
// Just using `getOrSet` below would be semantically sufficient, but we'd create
// a new series on every sample inserted via Add(), which causes allocations
// and makes our series IDs rather random and harder to compress in postings.
s := h.series.getByHash(hash, lset)
if s != nil {
return s, false
}
// Optimistically assume that we are the first one to create the series.
id := atomic.AddUint64(&h.lastSeriesID, 1)
return h.getOrCreateWithID(id, hash, lset)
}
func (h *Head) getOrCreateWithID(id, hash uint64, lset labels.Labels) (*memSeries, bool) {
s := newMemSeries(lset, id, h.chunkRange)
s, created := h.series.getOrSet(hash, s)
if !created {
return s, false
}
h.metrics.series.Inc()
h.metrics.seriesCreated.Inc()
h.postings.add(id, lset)
h.symMtx.Lock()
defer h.symMtx.Unlock()
for _, l := range lset {
valset, ok := h.values[l.Name]
if !ok {
valset = stringset{}
h.values[l.Name] = valset
}
valset.set(l.Value)
h.symbols[l.Name] = struct{}{}
h.symbols[l.Value] = struct{}{}
}
return s, true
}
// seriesHashmap is a simple hashmap for memSeries by their label set. It is built
// on top of a regular hashmap and holds a slice of series to resolve hash collisions.
// Its methods require the hash to be submitted with it to avoid re-computations throughout
// the code.
type seriesHashmap map[uint64][]*memSeries
func (m seriesHashmap) get(hash uint64, lset labels.Labels) *memSeries {
for _, s := range m[hash] {
if s.lset.Equals(lset) {
return s
}
}
return nil
}
func (m seriesHashmap) set(hash uint64, s *memSeries) {
l := m[hash]
for i, prev := range l {
if prev.lset.Equals(s.lset) {
l[i] = s
return
}
}
m[hash] = append(l, s)
}
func (m seriesHashmap) del(hash uint64, lset labels.Labels) {
var rem []*memSeries
for _, s := range m[hash] {
if !s.lset.Equals(lset) {
rem = append(rem, s)
}
}
if len(rem) == 0 {
delete(m, hash)
} else {
m[hash] = rem
}
}
// stripeSeries locks modulo ranges of IDs and hashes to reduce lock contention.
// The locks are padded to not be on the same cache line. Filling the badded space
// with the maps was profiled to be slower likely due to the additional pointer
// dereferences.
type stripeSeries struct {
series [stripeSize]map[uint64]*memSeries
hashes [stripeSize]seriesHashmap
locks [stripeSize]stripeLock
}
const (
stripeSize = 1 << 14
stripeMask = stripeSize - 1
)
type stripeLock struct {
sync.RWMutex
// Padding to avoid multiple locks being on the same cache line.
_ [40]byte
}
func newStripeSeries() *stripeSeries {
s := &stripeSeries{}
for i := range s.series {
s.series[i] = map[uint64]*memSeries{}
}
for i := range s.hashes {
s.hashes[i] = seriesHashmap{}
}
return s
}
// gc garbage collects old chunks that are strictly before mint and removes
// series entirely that have no chunks left.
func (s *stripeSeries) gc(mint int64) (map[uint64]struct{}, int) {
var (
deleted = map[uint64]struct{}{}
rmChunks = 0
)
// Run through all series and truncate old chunks. Mark those with no
// chunks left as deleted and store their ID.
for i := 0; i < stripeSize; i++ {
s.locks[i].Lock()
for hash, all := range s.hashes[i] {
for _, series := range all {
series.Lock()
rmChunks += series.truncateChunksBefore(mint)
if len(series.chunks) > 0 {
series.Unlock()
continue
}
// The series is gone entirely. We need to keep the series lock
// and make sure we have acquired the stripe locks for hash and ID of the
// series alike.
// If we don't hold them all, there's a very small chance that a series receives
// samples again while we are half-way into deleting it.
j := int(series.ref & stripeMask)
if i != j {
s.locks[j].Lock()
}
deleted[series.ref] = struct{}{}
s.hashes[i].del(hash, series.lset)
delete(s.series[j], series.ref)
if i != j {
s.locks[j].Unlock()
}
series.Unlock()
}
}
s.locks[i].Unlock()
}
return deleted, rmChunks
}
func (s *stripeSeries) getByID(id uint64) *memSeries {
i := id & stripeMask
s.locks[i].RLock()
series := s.series[i][id]
s.locks[i].RUnlock()
return series
}
func (s *stripeSeries) getByHash(hash uint64, lset labels.Labels) *memSeries {
i := hash & stripeMask
s.locks[i].RLock()
series := s.hashes[i].get(hash, lset)
s.locks[i].RUnlock()
return series
}
func (s *stripeSeries) getOrSet(hash uint64, series *memSeries) (*memSeries, bool) {
i := hash & stripeMask
s.locks[i].Lock()
if prev := s.hashes[i].get(hash, series.lset); prev != nil {
s.locks[i].Unlock()
return prev, false
}
s.hashes[i].set(hash, series)
s.locks[i].Unlock()
i = series.ref & stripeMask
s.locks[i].Lock()
s.series[i][series.ref] = series
s.locks[i].Unlock()
return series, true
}
type sample struct {
t int64
v float64
}
// memSeries is the in-memory representation of a series. None of its methods
// are goroutine safe and its the callers responsibility to lock it.
type memSeries struct {
sync.Mutex
ref uint64
lset labels.Labels
chunks []*memChunk
chunkRange int64
firstChunkID int
nextAt int64 // timestamp at which to cut the next chunk.
lastValue float64
sampleBuf [4]sample
app chunks.Appender // Current appender for the chunk.
}
func (s *memSeries) minTime() int64 {
return s.chunks[0].minTime
}
func (s *memSeries) maxTime() int64 {
return s.head().maxTime
}
func (s *memSeries) cut(mint int64) *memChunk {
c := &memChunk{
chunk: chunks.NewXORChunk(),
minTime: mint,
maxTime: math.MinInt64,
}
s.chunks = append(s.chunks, c)
app, err := c.chunk.Appender()
if err != nil {
panic(err)
}
s.app = app
return c
}
func newMemSeries(lset labels.Labels, id uint64, chunkRange int64) *memSeries {
s := &memSeries{
lset: lset,
ref: id,
chunkRange: chunkRange,
nextAt: math.MinInt64,
}
return s
}
// appendable checks whether the given sample is valid for appending to the series.
func (s *memSeries) appendable(t int64, v float64) error {
c := s.head()
if c == nil {
return nil
}
if t > c.maxTime {
return nil
}
if t < c.maxTime {
return ErrOutOfOrderSample
}
// We are allowing exact duplicates as we can encounter them in valid cases
// like federation and erroring out at that time would be extremely noisy.
if math.Float64bits(s.lastValue) != math.Float64bits(v) {
return ErrAmendSample
}
return nil
}
func (s *memSeries) chunk(id int) *memChunk {
ix := id - s.firstChunkID
if ix < 0 || ix >= len(s.chunks) {
return nil
}
return s.chunks[ix]
}
func (s *memSeries) chunkID(pos int) int {
return pos + s.firstChunkID
}
// truncateChunksBefore removes all chunks from the series that have not timestamp
// at or after mint. Chunk IDs remain unchanged.
func (s *memSeries) truncateChunksBefore(mint int64) (removed int) {
var k int
for i, c := range s.chunks {
if c.maxTime >= mint {
break
}
k = i + 1
}
s.chunks = append(s.chunks[:0], s.chunks[k:]...)
s.firstChunkID += k
return k
}
// append adds the sample (t, v) to the series.
func (s *memSeries) append(t int64, v float64) (success, chunkCreated bool) {
const samplesPerChunk = 120
c := s.head()
if c == nil {
c = s.cut(t)
chunkCreated = true
}
numSamples := c.chunk.NumSamples()
if c.maxTime >= t {
return false, chunkCreated
}
if numSamples > samplesPerChunk/4 && t >= s.nextAt {
c = s.cut(t)
chunkCreated = true
}
s.app.Append(t, v)
c.maxTime = t
if numSamples == samplesPerChunk/4 {
_, maxt := rangeForTimestamp(c.minTime, s.chunkRange)
s.nextAt = computeChunkEndTime(c.minTime, c.maxTime, maxt)
}
s.lastValue = v
s.sampleBuf[0] = s.sampleBuf[1]
s.sampleBuf[1] = s.sampleBuf[2]
s.sampleBuf[2] = s.sampleBuf[3]
s.sampleBuf[3] = sample{t: t, v: v}
return true, chunkCreated
}
// computeChunkEndTime estimates the end timestamp based the beginning of a chunk,
// its current timestamp and the upper bound up to which we insert data.
// It assumes that the time range is 1/4 full.
func computeChunkEndTime(start, cur, max int64) int64 {
a := (max - start) / ((cur - start + 1) * 4)
if a == 0 {
return max
}
return start + (max-start)/a
}
func (s *memSeries) iterator(id int) chunks.Iterator {
c := s.chunk(id)
if id-s.firstChunkID < len(s.chunks)-1 {
return c.chunk.Iterator()
}
// Serve the last 4 samples for the last chunk from the series buffer
// as their compressed bytes may be mutated by added samples.
it := &memSafeIterator{
Iterator: c.chunk.Iterator(),
i: -1,
total: c.chunk.NumSamples(),
buf: s.sampleBuf,
}
return it
}
func (s *memSeries) head() *memChunk {
if len(s.chunks) == 0 {
return nil
}
return s.chunks[len(s.chunks)-1]
}
type memChunk struct {
chunk chunks.Chunk
minTime, maxTime int64
}
type memSafeIterator struct {
chunks.Iterator
i int
total int
buf [4]sample
}
func (it *memSafeIterator) Next() bool {
if it.i+1 >= it.total {
return false
}
it.i++
if it.total-it.i > 4 {
return it.Iterator.Next()
}
return true
}
func (it *memSafeIterator) At() (int64, float64) {
if it.total-it.i > 4 {
return it.Iterator.At()
}
s := it.buf[4-(it.total-it.i)]
return s.t, s.v
}