aria2/src/SocketCore.cc

1375 lines
37 KiB
C++

/* <!-- copyright */
/*
* aria2 - The high speed download utility
*
* Copyright (C) 2006 Tatsuhiro Tsujikawa
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* In addition, as a special exception, the copyright holders give
* permission to link the code of portions of this program with the
* OpenSSL library under certain conditions as described in each
* individual source file, and distribute linked combinations
* including the two.
* You must obey the GNU General Public License in all respects
* for all of the code used other than OpenSSL. If you modify
* file(s) with this exception, you may extend this exception to your
* version of the file(s), but you are not obligated to do so. If you
* do not wish to do so, delete this exception statement from your
* version. If you delete this exception statement from all source
* files in the program, then also delete it here.
*/
/* copyright --> */
#include "SocketCore.h"
#ifdef HAVE_IPHLPAPI_H
# include <iphlpapi.h>
#endif // HAVE_IPHLPAPI_H
#include <unistd.h>
#ifdef HAVE_IFADDRS_H
# include <ifaddrs.h>
#endif // HAVE_IFADDRS_H
#include <cerrno>
#include <cstring>
#include "message.h"
#include "DlRetryEx.h"
#include "DlAbortEx.h"
#include "fmt.h"
#include "util.h"
#include "TimeA2.h"
#include "a2functional.h"
#include "LogFactory.h"
#include "A2STR.h"
#ifdef ENABLE_SSL
# include "TLSContext.h"
# include "TLSSession.h"
#endif // ENABLE_SSL
namespace aria2 {
#ifndef __MINGW32__
# define SOCKET_ERRNO (errno)
#else
# define SOCKET_ERRNO (WSAGetLastError())
#endif // __MINGW32__
#ifdef __MINGW32__
# define A2_EINPROGRESS WSAEWOULDBLOCK
# define A2_EWOULDBLOCK WSAEWOULDBLOCK
# define A2_EINTR WSAEINTR
# define A2_WOULDBLOCK(e) (e == WSAEWOULDBLOCK)
#else // !__MINGW32__
# define A2_EINPROGRESS EINPROGRESS
# ifndef EWOULDBLOCK
# define EWOULDBLOCK EAGAIN
# endif // EWOULDBLOCK
# define A2_EWOULDBLOCK EWOULDBLOCK
# define A2_EINTR EINTR
# if EWOULDBLOCK == EAGAIN
# define A2_WOULDBLOCK(e) (e == EWOULDBLOCK)
# else // EWOULDBLOCK != EAGAIN
# define A2_WOULDBLOCK(e) (e == EWOULDBLOCK || e == EAGAIN)
# endif // EWOULDBLOCK != EAGAIN
#endif // !__MINGW32__
#ifdef __MINGW32__
# define CLOSE(X) ::closesocket(X)
#else
# define CLOSE(X) close(X)
#endif // __MINGW32__
namespace {
std::string errorMsg(int errNum)
{
#ifndef __MINGW32__
return util::safeStrerror(errNum);
#else
static char buf[256];
if (FormatMessage(
FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,
NULL,
errNum,
MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US),
(LPTSTR) &buf,
sizeof(buf),
NULL
) == 0) {
snprintf(buf, sizeof(buf), EX_SOCKET_UNKNOWN_ERROR, errNum, errNum);
}
return buf;
#endif // __MINGW32__
}
} // namespace
namespace {
enum TlsState {
// TLS object is not initialized.
A2_TLS_NONE = 0,
// TLS object is now handshaking.
A2_TLS_HANDSHAKING = 2,
// TLS object is now connected.
A2_TLS_CONNECTED = 3
};
} // namespace
int SocketCore::protocolFamily_ = AF_UNSPEC;
std::vector<std::pair<sockaddr_union, socklen_t> >
SocketCore::bindAddrs_;
#ifdef ENABLE_SSL
SharedHandle<TLSContext> SocketCore::clTlsContext_;
SharedHandle<TLSContext> SocketCore::svTlsContext_;
void SocketCore::setClientTLSContext
(const SharedHandle<TLSContext>& tlsContext)
{
clTlsContext_ = tlsContext;
}
void SocketCore::setServerTLSContext
(const SharedHandle<TLSContext>& tlsContext)
{
svTlsContext_ = tlsContext;
}
#endif // ENABLE_SSL
SocketCore::SocketCore(int sockType)
: sockType_(sockType),
sockfd_(-1)
{
init();
}
SocketCore::SocketCore(sock_t sockfd, int sockType)
: sockType_(sockType),
sockfd_(sockfd)
{
init();
}
void SocketCore::init()
{
blocking_ = true;
secure_ = A2_TLS_NONE;
wantRead_ = false;
wantWrite_ = false;
}
SocketCore::~SocketCore() {
closeConnection();
}
void SocketCore::create(int family, int protocol)
{
int errNum;
closeConnection();
sock_t fd = socket(family, sockType_, protocol);
errNum = SOCKET_ERRNO;
if(fd == (sock_t) -1) {
throw DL_ABORT_EX
(fmt("Failed to create socket. Cause:%s", errorMsg(errNum).c_str()));
}
int sockopt = 1;
if(setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
(a2_sockopt_t) &sockopt, sizeof(sockopt)) < 0) {
errNum = SOCKET_ERRNO;
CLOSE(fd);
throw DL_ABORT_EX
(fmt("Failed to create socket. Cause:%s", errorMsg(errNum).c_str()));
}
sockfd_ = fd;
}
static sock_t bindInternal
(int family, int socktype, int protocol,
const struct sockaddr* addr, socklen_t addrlen,
std::string& error)
{
int errNum;
sock_t fd = socket(family, socktype, protocol);
errNum = SOCKET_ERRNO;
if(fd == (sock_t) -1) {
error = errorMsg(errNum);
return -1;
}
int sockopt = 1;
if(setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (a2_sockopt_t) &sockopt,
sizeof(sockopt)) < 0) {
errNum = SOCKET_ERRNO;
error = errorMsg(errNum);
CLOSE(fd);
return -1;
}
#ifdef IPV6_V6ONLY
if(family == AF_INET6) {
int sockopt = 1;
if(setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, (a2_sockopt_t) &sockopt,
sizeof(sockopt)) < 0) {
errNum = SOCKET_ERRNO;
error = errorMsg(errNum);
CLOSE(fd);
return -1;
}
}
#endif // IPV6_V6ONLY
if(::bind(fd, addr, addrlen) == -1) {
errNum = SOCKET_ERRNO;
error = errorMsg(errNum);
CLOSE(fd);
return -1;
}
return fd;
}
static sock_t bindTo
(const char* host, uint16_t port, int family, int sockType,
int getaddrinfoFlags, std::string& error)
{
struct addrinfo* res;
int s = callGetaddrinfo(&res, host, util::uitos(port).c_str(),
family, sockType, getaddrinfoFlags, 0);
if(s) {
error = gai_strerror(s);
return -1;
}
WSAAPI_AUTO_DELETE<struct addrinfo*> resDeleter(res, freeaddrinfo);
struct addrinfo* rp;
for(rp = res; rp; rp = rp->ai_next) {
sock_t fd = bindInternal(rp->ai_family, rp->ai_socktype, rp->ai_protocol,
rp->ai_addr, rp->ai_addrlen, error);
if(fd != (sock_t)-1) {
return fd;
}
}
return -1;
}
void SocketCore::bindWithFamily(uint16_t port, int family, int flags)
{
closeConnection();
std::string error;
sock_t fd = bindTo(0, port, family, sockType_, flags, error);
if(fd == (sock_t) -1) {
throw DL_ABORT_EX(fmt(EX_SOCKET_BIND, error.c_str()));
} else {
sockfd_ = fd;
}
}
void SocketCore::bind
(const char* addr, uint16_t port, int family, int flags)
{
closeConnection();
std::string error;
const char* addrp;
if(addr && addr[0]) {
addrp = addr;
} else {
addrp = 0;
}
if(!(flags&AI_PASSIVE) || bindAddrs_.empty()) {
sock_t fd = bindTo(addrp, port, family, sockType_, flags, error);
if(fd != (sock_t) -1) {
sockfd_ = fd;
}
} else {
for(std::vector<std::pair<sockaddr_union, socklen_t> >::
const_iterator i = bindAddrs_.begin(), eoi = bindAddrs_.end();
i != eoi; ++i) {
char host[NI_MAXHOST];
int s;
s = getnameinfo(&(*i).first.sa, (*i).second, host, NI_MAXHOST, 0, 0,
NI_NUMERICHOST);
if(s) {
error = gai_strerror(s);
continue;
}
if(addrp && strcmp(host, addrp) != 0) {
error = "Given address and resolved address do not match.";
continue;
}
sock_t fd = bindTo(host, port, family, sockType_, flags, error);
if(fd != (sock_t)-1) {
sockfd_ = fd;
break;
}
}
}
if(sockfd_ == (sock_t) -1) {
throw DL_ABORT_EX(fmt(EX_SOCKET_BIND, error.c_str()));
}
}
void SocketCore::bind(uint16_t port, int flags)
{
bind(0, port, protocolFamily_, flags);
}
void SocketCore::bind(const struct sockaddr* addr, socklen_t addrlen)
{
closeConnection();
std::string error;
sock_t fd = bindInternal(addr->sa_family, sockType_, 0, addr, addrlen, error);
if(fd != (sock_t)-1) {
sockfd_ = fd;
} else {
throw DL_ABORT_EX(fmt(EX_SOCKET_BIND, error.c_str()));
}
}
void SocketCore::beginListen()
{
if(listen(sockfd_, 1) == -1) {
int errNum = SOCKET_ERRNO;
throw DL_ABORT_EX(fmt(EX_SOCKET_LISTEN, errorMsg(errNum).c_str()));
}
setNonBlockingMode();
}
SharedHandle<SocketCore> SocketCore::acceptConnection() const
{
sockaddr_union sockaddr;
socklen_t len = sizeof(sockaddr);
sock_t fd;
while((fd = accept(sockfd_, &sockaddr.sa, &len)) == (sock_t) -1 &&
SOCKET_ERRNO == A2_EINTR);
int errNum = SOCKET_ERRNO;
if(fd == (sock_t) -1) {
throw DL_ABORT_EX(fmt(EX_SOCKET_ACCEPT, errorMsg(errNum).c_str()));
}
SharedHandle<SocketCore> sock(new SocketCore(fd, sockType_));
sock->setNonBlockingMode();
return sock;
}
int SocketCore::getAddrInfo(std::pair<std::string, uint16_t>& addrinfo) const
{
sockaddr_union sockaddr;
socklen_t len = sizeof(sockaddr);
getAddrInfo(sockaddr, len);
addrinfo = util::getNumericNameInfo(&sockaddr.sa, len);
return sockaddr.storage.ss_family;
}
void SocketCore::getAddrInfo(sockaddr_union& sockaddr, socklen_t& len) const
{
if(getsockname(sockfd_, &sockaddr.sa, &len) == -1) {
int errNum = SOCKET_ERRNO;
throw DL_ABORT_EX(fmt(EX_SOCKET_GET_NAME, errorMsg(errNum).c_str()));
}
}
int SocketCore::getAddressFamily() const
{
sockaddr_union sockaddr;
socklen_t len = sizeof(sockaddr);
getAddrInfo(sockaddr, len);
return sockaddr.storage.ss_family;
}
int SocketCore::getPeerInfo(std::pair<std::string, uint16_t>& peerinfo) const
{
sockaddr_union sockaddr;
socklen_t len = sizeof(sockaddr);
if(getpeername(sockfd_, &sockaddr.sa, &len) == -1) {
int errNum = SOCKET_ERRNO;
throw DL_ABORT_EX(fmt(EX_SOCKET_GET_NAME, errorMsg(errNum).c_str()));
}
peerinfo = util::getNumericNameInfo(&sockaddr.sa, len);
return sockaddr.storage.ss_family;
}
void SocketCore::establishConnection(const std::string& host, uint16_t port,
bool tcpNodelay)
{
closeConnection();
std::string error;
struct addrinfo* res;
int s;
s = callGetaddrinfo(&res, host.c_str(), util::uitos(port).c_str(),
protocolFamily_, sockType_, 0, 0);
if(s) {
throw DL_ABORT_EX(fmt(EX_RESOLVE_HOSTNAME, host.c_str(), gai_strerror(s)));
}
WSAAPI_AUTO_DELETE<struct addrinfo*> resDeleter(res, freeaddrinfo);
struct addrinfo* rp;
int errNum;
for(rp = res; rp; rp = rp->ai_next) {
sock_t fd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
errNum = SOCKET_ERRNO;
if(fd == (sock_t) -1) {
error = errorMsg(errNum);
continue;
}
int sockopt = 1;
if(setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (a2_sockopt_t) &sockopt,
sizeof(sockopt)) < 0) {
errNum = SOCKET_ERRNO;
error = errorMsg(errNum);
CLOSE(fd);
continue;
}
if(!bindAddrs_.empty()) {
bool bindSuccess = false;
for(std::vector<std::pair<sockaddr_union, socklen_t> >::
const_iterator i = bindAddrs_.begin(), eoi = bindAddrs_.end();
i != eoi; ++i) {
if(::bind(fd, &(*i).first.sa, (*i).second) == -1) {
errNum = SOCKET_ERRNO;
error = errorMsg(errNum);
A2_LOG_DEBUG(fmt(EX_SOCKET_BIND, error.c_str()));
} else {
bindSuccess = true;
break;
}
}
if(!bindSuccess) {
CLOSE(fd);
continue;
}
}
sockfd_ = fd;
// make socket non-blocking mode
setNonBlockingMode();
if(tcpNodelay) {
setTcpNodelay(true);
}
if(connect(fd, rp->ai_addr, rp->ai_addrlen) == -1 &&
SOCKET_ERRNO != A2_EINPROGRESS) {
errNum = SOCKET_ERRNO;
error = errorMsg(errNum);
CLOSE(sockfd_);
sockfd_ = (sock_t) -1;
continue;
}
// TODO at this point, connection may not be established and it may fail
// later. In such case, next ai_addr should be tried.
break;
}
if(sockfd_ == (sock_t) -1) {
throw DL_ABORT_EX(fmt(EX_SOCKET_CONNECT, host.c_str(), error.c_str()));
}
}
void SocketCore::setSockOpt
(int level, int optname, void* optval, socklen_t optlen)
{
if(setsockopt(sockfd_, level, optname, (a2_sockopt_t)optval, optlen) < 0) {
int errNum = SOCKET_ERRNO;
throw DL_ABORT_EX(fmt(EX_SOCKET_SET_OPT, errorMsg(errNum).c_str()));
}
}
void SocketCore::setMulticastInterface(const std::string& localAddr)
{
in_addr addr;
if(localAddr.empty()) {
addr.s_addr = htonl(INADDR_ANY);
} else {
if(inetPton(AF_INET, localAddr.c_str(), &addr) != 0) {
throw DL_ABORT_EX(fmt("%s is not valid IPv4 numeric address",
localAddr.c_str()));
}
}
setSockOpt(IPPROTO_IP, IP_MULTICAST_IF, &addr, sizeof(addr));
}
void SocketCore::setMulticastTtl(unsigned char ttl)
{
setSockOpt(IPPROTO_IP, IP_MULTICAST_TTL, &ttl, sizeof(ttl));
}
void SocketCore::setMulticastLoop(unsigned char loop)
{
setSockOpt(IPPROTO_IP, IP_MULTICAST_LOOP, &loop, sizeof(loop));
}
void SocketCore::joinMulticastGroup
(const std::string& multicastAddr, uint16_t multicastPort,
const std::string& localAddr)
{
in_addr multiAddr;
if(inetPton(AF_INET, multicastAddr.c_str(), &multiAddr) != 0) {
throw DL_ABORT_EX(fmt("%s is not valid IPv4 numeric address",
multicastAddr.c_str()));
}
in_addr ifAddr;
if(localAddr.empty()) {
ifAddr.s_addr = htonl(INADDR_ANY);
} else {
if(inetPton(AF_INET, localAddr.c_str(), &ifAddr) != 0) {
throw DL_ABORT_EX(fmt("%s is not valid IPv4 numeric address",
localAddr.c_str()));
}
}
struct ip_mreq mreq;
memset(&mreq, 0, sizeof(mreq));
mreq.imr_multiaddr = multiAddr;
mreq.imr_interface = ifAddr;
setSockOpt(IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(mreq));
}
void SocketCore::setTcpNodelay(bool f)
{
int val = f;
setSockOpt(IPPROTO_TCP, TCP_NODELAY, &val, sizeof(val));
}
void SocketCore::setNonBlockingMode()
{
#ifdef __MINGW32__
static u_long flag = 1;
if (::ioctlsocket(sockfd_, FIONBIO, &flag) == -1) {
int errNum = SOCKET_ERRNO;
throw DL_ABORT_EX(fmt(EX_SOCKET_NONBLOCKING, errorMsg(errNum).c_str()));
}
#else
int flags;
while((flags = fcntl(sockfd_, F_GETFL, 0)) == -1 && errno == EINTR);
// TODO add error handling
while(fcntl(sockfd_, F_SETFL, flags|O_NONBLOCK) == -1 && errno == EINTR);
#endif // __MINGW32__
blocking_ = false;
}
void SocketCore::setBlockingMode()
{
#ifdef __MINGW32__
static u_long flag = 0;
if (::ioctlsocket(sockfd_, FIONBIO, &flag) == -1) {
int errNum = SOCKET_ERRNO;
throw DL_ABORT_EX(fmt(EX_SOCKET_BLOCKING, errorMsg(errNum).c_str()));
}
#else
int flags;
while((flags = fcntl(sockfd_, F_GETFL, 0)) == -1 && errno == EINTR);
// TODO add error handling
while(fcntl(sockfd_, F_SETFL, flags&(~O_NONBLOCK)) == -1 && errno == EINTR);
#endif // __MINGW32__
blocking_ = true;
}
void SocketCore::closeConnection()
{
#ifdef ENABLE_SSL
if(tlsSession_) {
tlsSession_->closeConnection();
tlsSession_.reset();
}
#endif // ENABLE_SSL
if(sockfd_ != (sock_t) -1) {
shutdown(sockfd_, SHUT_WR);
CLOSE(sockfd_);
sockfd_ = -1;
}
}
#ifndef __MINGW32__
# define CHECK_FD(fd) \
if(fd < 0 || FD_SETSIZE <= fd) { \
logger_->warn("Detected file descriptor >= FD_SETSIZE or < 0. " \
"Download may slow down or fail."); \
return false; \
}
#endif // !__MINGW32__
bool SocketCore::isWritable(time_t timeout)
{
#ifdef HAVE_POLL
struct pollfd p;
p.fd = sockfd_;
p.events = POLLOUT;
int r;
while((r = poll(&p, 1, timeout*1000)) == -1 && errno == EINTR);
int errNum = SOCKET_ERRNO;
if(r > 0) {
return p.revents&(POLLOUT|POLLHUP|POLLERR);
} else if(r == 0) {
return false;
} else {
throw DL_RETRY_EX(fmt(EX_SOCKET_CHECK_WRITABLE, errorMsg(errNum).c_str()));
}
#else // !HAVE_POLL
# ifndef __MINGW32__
CHECK_FD(sockfd_);
# endif // !__MINGW32__
fd_set fds;
FD_ZERO(&fds);
FD_SET(sockfd_, &fds);
struct timeval tv;
tv.tv_sec = timeout;
tv.tv_usec = 0;
int r = select(sockfd_+1, NULL, &fds, NULL, &tv);
int errNum = SOCKET_ERRNO;
if(r == 1) {
return true;
} else if(r == 0) {
// time out
return false;
} else {
if(errNum == A2_EINPROGRESS || errNum == A2_EINTR) {
return false;
} else {
throw DL_RETRY_EX
(fmt(EX_SOCKET_CHECK_WRITABLE, errorMsg(errNum).c_str()));
}
}
#endif // !HAVE_POLL
}
bool SocketCore::isReadable(time_t timeout)
{
#ifdef HAVE_POLL
struct pollfd p;
p.fd = sockfd_;
p.events = POLLIN;
int r;
while((r = poll(&p, 1, timeout*1000)) == -1 && errno == EINTR);
int errNum = SOCKET_ERRNO;
if(r > 0) {
return p.revents&(POLLIN|POLLHUP|POLLERR);
} else if(r == 0) {
return false;
} else {
throw DL_RETRY_EX(fmt(EX_SOCKET_CHECK_READABLE, errorMsg(errNum).c_str()));
}
#else // !HAVE_POLL
# ifndef __MINGW32__
CHECK_FD(sockfd_);
# endif // !__MINGW32__
fd_set fds;
FD_ZERO(&fds);
FD_SET(sockfd_, &fds);
struct timeval tv;
tv.tv_sec = timeout;
tv.tv_usec = 0;
int r = select(sockfd_+1, &fds, NULL, NULL, &tv);
int errNum = SOCKET_ERRNO;
if(r == 1) {
return true;
} else if(r == 0) {
// time out
return false;
} else {
if(errNum == A2_EINPROGRESS || errNum == A2_EINTR) {
return false;
} else {
throw DL_RETRY_EX
(fmt(EX_SOCKET_CHECK_READABLE, errorMsg(errNum).c_str()));
}
}
#endif // !HAVE_POLL
}
ssize_t SocketCore::writeVector(a2iovec *iov, size_t iovcnt)
{
ssize_t ret = 0;
wantRead_ = false;
wantWrite_ = false;
if(!secure_) {
#ifdef __MINGW32__
DWORD nsent;
int rv = WSASend(sockfd_, iov, iovcnt, &nsent, 0, 0, 0);
if(rv == 0) {
ret = nsent;
} else {
ret = -1;
}
#else // !__MINGW32__
while((ret = writev(sockfd_, iov, iovcnt)) == -1 &&
SOCKET_ERRNO == A2_EINTR);
#endif // !__MINGW32__
int errNum = SOCKET_ERRNO;
if(ret == -1) {
if(A2_WOULDBLOCK(errNum)) {
wantWrite_ = true;
ret = 0;
} else {
throw DL_RETRY_EX(fmt(EX_SOCKET_SEND, errorMsg(errNum).c_str()));
}
}
} else {
// For SSL/TLS, we could not use writev, so just iterate vector
// and write the data in normal way.
for(size_t i = 0; i < iovcnt; ++i) {
ssize_t rv = writeData(iov[i].A2IOVEC_BASE, iov[i].A2IOVEC_LEN);
if(rv == 0) {
break;
}
ret += rv;
}
}
return ret;
}
ssize_t SocketCore::writeData(const void* data, size_t len)
{
ssize_t ret = 0;
wantRead_ = false;
wantWrite_ = false;
if(!secure_) {
// Cast for Windows send()
while((ret = send(sockfd_, reinterpret_cast<const char*>(data),
len, 0)) == -1 && SOCKET_ERRNO == A2_EINTR);
int errNum = SOCKET_ERRNO;
if(ret == -1) {
if(A2_WOULDBLOCK(errNum)) {
wantWrite_ = true;
ret = 0;
} else {
throw DL_RETRY_EX(fmt(EX_SOCKET_SEND, errorMsg(errNum).c_str()));
}
}
} else {
#ifdef ENABLE_SSL
ret = tlsSession_->writeData(data, len);
if(ret < 0) {
if(ret == TLS_ERR_WOULDBLOCK) {
if(tlsSession_->checkDirection() == TLS_WANT_READ) {
wantRead_ = true;
} else {
wantWrite_ = true;
}
ret = 0;
} else {
throw DL_RETRY_EX(fmt(EX_SOCKET_SEND,
tlsSession_->getLastErrorString().c_str()));
}
}
#endif // ENABLE_SSL
}
return ret;
}
void SocketCore::readData(void* data, size_t& len)
{
ssize_t ret = 0;
wantRead_ = false;
wantWrite_ = false;
if(!secure_) {
// Cast for Windows recv()
while((ret = recv(sockfd_, reinterpret_cast<char*>(data), len, 0)) == -1 &&
SOCKET_ERRNO == A2_EINTR);
int errNum = SOCKET_ERRNO;
if(ret == -1) {
if(A2_WOULDBLOCK(errNum)) {
wantRead_ = true;
ret = 0;
} else {
throw DL_RETRY_EX(fmt(EX_SOCKET_RECV, errorMsg(errNum).c_str()));
}
}
} else {
#ifdef ENABLE_SSL
ret = tlsSession_->readData(data, len);
if(ret < 0) {
if(ret == TLS_ERR_WOULDBLOCK) {
if(tlsSession_->checkDirection() == TLS_WANT_READ) {
wantRead_ = true;
} else {
wantWrite_ = true;
}
ret = 0;
} else {
throw DL_RETRY_EX(fmt(EX_SOCKET_SEND,
tlsSession_->getLastErrorString().c_str()));
}
}
#endif // ENABLE_SSL
}
len = ret;
}
#ifdef ENABLE_SSL
bool SocketCore::tlsAccept()
{
return tlsHandshake(svTlsContext_.get(), A2STR::NIL);
}
bool SocketCore::tlsConnect(const std::string& hostname)
{
return tlsHandshake(clTlsContext_.get(), hostname);
}
bool SocketCore::tlsHandshake(TLSContext* tlsctx, const std::string& hostname)
{
int rv = 0;
std::string handshakeError;
wantRead_ = false;
wantWrite_ = false;
switch(secure_) {
case A2_TLS_NONE:
tlsSession_.reset(TLSSession::make(tlsctx));
rv = tlsSession_->init(sockfd_);
if(rv != TLS_ERR_OK) {
std::string error = tlsSession_->getLastErrorString();
tlsSession_.reset();
throw DL_ABORT_EX(fmt(EX_SSL_INIT_FAILURE, error.c_str()));
}
// Check hostname is not numeric and it includes ".". Setting
// "localhost" will produce TLS alert with GNUTLS.
if(tlsctx->getSide() == TLS_CLIENT &&
!util::isNumericHost(hostname) &&
hostname.find(".") != std::string::npos) {
rv = tlsSession_->setSNIHostname(hostname);
if(rv != TLS_ERR_OK) {
throw DL_ABORT_EX(fmt(EX_SSL_INIT_FAILURE,
tlsSession_->getLastErrorString().c_str()));
}
}
secure_ = A2_TLS_HANDSHAKING;
// Fall through
case A2_TLS_HANDSHAKING:
if(tlsctx->getSide() == TLS_CLIENT) {
rv = tlsSession_->tlsConnect(hostname, handshakeError);
} else {
rv = tlsSession_->tlsAccept();
}
if(rv == TLS_ERR_OK) {
secure_ = A2_TLS_CONNECTED;
} else if(rv == TLS_ERR_WOULDBLOCK) {
if(tlsSession_->checkDirection() == TLS_WANT_READ) {
wantRead_ = true;
} else {
wantWrite_ = true;
}
return false;
} else {
throw DL_ABORT_EX(fmt("SSL/TLS handshake failure: %s",
handshakeError.empty() ?
tlsSession_->getLastErrorString().c_str() :
handshakeError.c_str()));
}
break;
default:
break;
}
return true;
}
#endif // ENABLE_SSL
ssize_t SocketCore::writeData(const void* data, size_t len,
const std::string& host, uint16_t port)
{
wantRead_ = false;
wantWrite_ = false;
struct addrinfo* res;
int s;
s = callGetaddrinfo(&res, host.c_str(), util::uitos(port).c_str(),
protocolFamily_, sockType_, 0, 0);
if(s) {
throw DL_ABORT_EX(fmt(EX_SOCKET_SEND, gai_strerror(s)));
}
WSAAPI_AUTO_DELETE<struct addrinfo*> resDeleter(res, freeaddrinfo);
struct addrinfo* rp;
ssize_t r = -1;
int errNum = 0;
for(rp = res; rp; rp = rp->ai_next) {
// Cast for Windows sendto()
while((r = sendto(sockfd_, reinterpret_cast<const char*>(data), len, 0,
rp->ai_addr, rp->ai_addrlen)) == -1
&& A2_EINTR == SOCKET_ERRNO);
errNum = SOCKET_ERRNO;
if(r == static_cast<ssize_t>(len)) {
break;
}
if(r == -1 && A2_WOULDBLOCK(errNum)) {
wantWrite_ = true;
r = 0;
break;
}
}
if(r == -1) {
throw DL_ABORT_EX(fmt(EX_SOCKET_SEND, errorMsg(errNum).c_str()));
}
return r;
}
ssize_t SocketCore::readDataFrom(void* data, size_t len,
std::pair<std::string /* numerichost */,
uint16_t /* port */>& sender)
{
wantRead_ = false;
wantWrite_ = false;
sockaddr_union sockaddr;
socklen_t sockaddrlen = sizeof(sockaddr);
ssize_t r;
// Cast for Windows recvfrom()
while((r = recvfrom(sockfd_, reinterpret_cast<char*>(data), len, 0,
&sockaddr.sa, &sockaddrlen)) == -1
&& A2_EINTR == SOCKET_ERRNO);
int errNum = SOCKET_ERRNO;
if(r == -1) {
if(A2_WOULDBLOCK(errNum)) {
wantRead_ = true;
r = 0;
} else {
throw DL_RETRY_EX(fmt(EX_SOCKET_RECV, errorMsg(errNum).c_str()));
}
} else {
sender = util::getNumericNameInfo(&sockaddr.sa, sockaddrlen);
}
return r;
}
std::string SocketCore::getSocketError() const
{
int error;
socklen_t optlen = sizeof(error);
if(getsockopt(sockfd_, SOL_SOCKET, SO_ERROR,
(a2_sockopt_t) &error, &optlen) == -1) {
int errNum = SOCKET_ERRNO;
throw DL_ABORT_EX
(fmt("Failed to get socket error: %s", errorMsg(errNum).c_str()));
}
if(error != 0) {
return errorMsg(error);
} else {
return "";
}
}
bool SocketCore::wantRead() const
{
return wantRead_;
}
bool SocketCore::wantWrite() const
{
return wantWrite_;
}
void SocketCore::bindAddress(const std::string& iface)
{
std::vector<std::pair<sockaddr_union, socklen_t> > bindAddrs;
getInterfaceAddress(bindAddrs, iface, protocolFamily_);
if(bindAddrs.empty()) {
throw DL_ABORT_EX
(fmt(MSG_INTERFACE_NOT_FOUND, iface.c_str(), "not available"));
} else {
bindAddrs_.swap(bindAddrs);
for(std::vector<std::pair<sockaddr_union, socklen_t> >::
const_iterator i = bindAddrs_.begin(), eoi = bindAddrs_.end();
i != eoi; ++i) {
char host[NI_MAXHOST];
int s;
s = getnameinfo(&(*i).first.sa, (*i).second, host, NI_MAXHOST, 0, 0,
NI_NUMERICHOST);
if(s == 0) {
A2_LOG_DEBUG(fmt("Sockets will bind to %s", host));
}
}
}
}
void getInterfaceAddress
(std::vector<std::pair<sockaddr_union, socklen_t> >& ifAddrs,
const std::string& iface, int family, int aiFlags)
{
A2_LOG_DEBUG(fmt("Finding interface %s", iface.c_str()));
#ifdef HAVE_GETIFADDRS
// First find interface in interface addresses
struct ifaddrs* ifaddr = 0;
if(getifaddrs(&ifaddr) == -1) {
int errNum = SOCKET_ERRNO;
A2_LOG_INFO(fmt(MSG_INTERFACE_NOT_FOUND,
iface.c_str(), errorMsg(errNum).c_str()));
} else {
auto_delete<ifaddrs*> ifaddrDeleter(ifaddr, freeifaddrs);
for(ifaddrs* ifa = ifaddr; ifa; ifa = ifa->ifa_next) {
if(!ifa->ifa_addr) {
continue;
}
int iffamily = ifa->ifa_addr->sa_family;
if(family == AF_UNSPEC) {
if(iffamily != AF_INET && iffamily != AF_INET6) {
continue;
}
} else if(family == AF_INET) {
if(iffamily != AF_INET) {
continue;
}
} else if(family == AF_INET6) {
if(iffamily != AF_INET6) {
continue;
}
} else {
continue;
}
if(strcmp(iface.c_str(), ifa->ifa_name) == 0) {
socklen_t bindAddrLen =
iffamily == AF_INET ? sizeof(sockaddr_in) : sizeof(sockaddr_in6);
sockaddr_union bindAddr;
memset(&bindAddr, 0, sizeof(bindAddr));
memcpy(&bindAddr.storage, ifa->ifa_addr, bindAddrLen);
ifAddrs.push_back(std::make_pair(bindAddr, bindAddrLen));
}
}
}
#endif // HAVE_GETIFADDRS
if(ifAddrs.empty()) {
addrinfo* res;
int s;
s = callGetaddrinfo(&res, iface.c_str(), 0, family, SOCK_STREAM, aiFlags,0);
if(s) {
A2_LOG_INFO(fmt(MSG_INTERFACE_NOT_FOUND, iface.c_str(), gai_strerror(s)));
} else {
WSAAPI_AUTO_DELETE<addrinfo*> resDeleter(res, freeaddrinfo);
addrinfo* rp;
for(rp = res; rp; rp = rp->ai_next) {
// Try to bind socket with this address. If it fails, the
// address is not for this machine.
try {
SocketCore socket;
socket.bind(rp->ai_addr, rp->ai_addrlen);
sockaddr_union bindAddr;
memset(&bindAddr, 0, sizeof(bindAddr));
memcpy(&bindAddr.storage, rp->ai_addr, rp->ai_addrlen);
ifAddrs.push_back(std::make_pair(bindAddr, rp->ai_addrlen));
} catch(RecoverableException& e) {
continue;
}
}
}
}
}
namespace {
int defaultAIFlags = DEFAULT_AI_FLAGS;
int getDefaultAIFlags()
{
return defaultAIFlags;
}
} // namespace
void setDefaultAIFlags(int flags)
{
defaultAIFlags = flags;
}
int callGetaddrinfo
(struct addrinfo** resPtr, const char* host, const char* service, int family,
int sockType, int flags, int protocol)
{
struct addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = family;
hints.ai_socktype = sockType;
hints.ai_flags = getDefaultAIFlags();
hints.ai_flags |= flags;
hints.ai_protocol = protocol;
return getaddrinfo(host, service, &hints, resPtr);
}
int inetNtop(int af, const void* src, char* dst, socklen_t size)
{
int s;
sockaddr_union su;
memset(&su, 0, sizeof(su));
if(af == AF_INET) {
su.in.sin_family = AF_INET;
#ifdef HAVE_SOCKADDR_IN_SIN_LEN
su.in.sin_len = sizeof(su.in);
#endif // HAVE_SOCKADDR_IN_SIN_LEN
memcpy(&su.in.sin_addr, src, sizeof(su.in.sin_addr));
s = getnameinfo(&su.sa, sizeof(su.in),
dst, size, 0, 0, NI_NUMERICHOST);
} else if(af == AF_INET6) {
su.in6.sin6_family = AF_INET6;
#ifdef HAVE_SOCKADDR_IN6_SIN6_LEN
su.in6.sin6_len = sizeof(su.in6);
#endif // HAVE_SOCKADDR_IN6_SIN6_LEN
memcpy(&su.in6.sin6_addr, src, sizeof(su.in6.sin6_addr));
s = getnameinfo(&su.sa, sizeof(su.in6),
dst, size, 0, 0, NI_NUMERICHOST);
} else {
s = EAI_FAMILY;
}
return s;
}
int inetPton(int af, const char* src, void* dst)
{
union {
uint32_t ipv4_addr;
unsigned char ipv6_addr[16];
} binaddr;
size_t len = net::getBinAddr(binaddr.ipv6_addr, src);
if(af == AF_INET) {
if(len != 4) {
return -1;
}
in_addr* addr = reinterpret_cast<in_addr*>(dst);
addr->s_addr = binaddr.ipv4_addr;
} else if(af == AF_INET6) {
if(len != 16) {
return -1;
}
in6_addr* addr = reinterpret_cast<in6_addr*>(dst);
memcpy(addr->s6_addr, binaddr.ipv6_addr, sizeof(addr->s6_addr));
} else {
return -1;
}
return 0;
}
namespace net {
size_t getBinAddr(void* dest, const std::string& ip)
{
size_t len = 0;
addrinfo* res;
if(callGetaddrinfo(&res, ip.c_str(), 0, AF_UNSPEC,
0, AI_NUMERICHOST, 0) != 0) {
return len;
}
WSAAPI_AUTO_DELETE<addrinfo*> resDeleter(res, freeaddrinfo);
for(addrinfo* rp = res; rp; rp = rp->ai_next) {
sockaddr_union su;
memcpy(&su, rp->ai_addr, rp->ai_addrlen);
if(rp->ai_family == AF_INET) {
len = sizeof(in_addr);
memcpy(dest, &(su.in.sin_addr), len);
break;
} else if(rp->ai_family == AF_INET6) {
len = sizeof(in6_addr);
memcpy(dest, &(su.in6.sin6_addr), len);
break;
}
}
return len;
}
bool verifyHostname(const std::string& hostname,
const std::vector<std::string>& dnsNames,
const std::vector<std::string>& ipAddrs,
const std::string& commonName)
{
if(util::isNumericHost(hostname)) {
if(ipAddrs.empty()) {
return commonName == hostname;
}
// We need max 16 bytes to store IPv6 address.
unsigned char binAddr[16];
size_t addrLen = getBinAddr(binAddr, hostname);
if(addrLen == 0) {
return false;
}
for(std::vector<std::string>::const_iterator i = ipAddrs.begin(),
eoi = ipAddrs.end(); i != eoi; ++i) {
if(addrLen == (*i).size() &&
memcmp(binAddr, (*i).c_str(), addrLen) == 0) {
return true;
}
}
} else {
if(dnsNames.empty()) {
return util::tlsHostnameMatch(commonName, hostname);
}
for(std::vector<std::string>::const_iterator i = dnsNames.begin(),
eoi = dnsNames.end(); i != eoi; ++i) {
if(util::tlsHostnameMatch(*i, hostname)) {
return true;
}
}
}
return false;
}
namespace {
bool ipv4AddrConfigured = true;
bool ipv6AddrConfigured = true;
} // namespace
#ifdef __MINGW32__
namespace {
const uint32_t APIPA_IPV4_BEGIN = 2851995649u; // 169.254.0.1
const uint32_t APIPA_IPV4_END = 2852061183u; // 169.254.255.255
} // namespace
#endif // __MINGW32__
void checkAddrconfig()
{
#ifdef __MINGW32__
A2_LOG_INFO("Checking configured addresses");
ULONG bufsize = 15*1024;
ULONG retval = 0;
IP_ADAPTER_ADDRESSES* buf = 0;
int numTry = 0;
const int MAX_TRY = 3;
do {
buf = reinterpret_cast<IP_ADAPTER_ADDRESSES*>(malloc(bufsize));
retval = GetAdaptersAddresses(AF_UNSPEC, 0, 0, buf, &bufsize);
if(retval == ERROR_BUFFER_OVERFLOW) {
free(buf);
buf = 0;
} else {
break;
}
} while(retval == ERROR_BUFFER_OVERFLOW && numTry < MAX_TRY);
if(retval != NO_ERROR) {
A2_LOG_INFO("GetAdaptersAddresses failed. Assume both IPv4 and IPv6 "
" addresses are configured.");
return;
}
ipv4AddrConfigured = false;
ipv6AddrConfigured = false;
char host[NI_MAXHOST];
sockaddr_union ad;
int rv;
for(IP_ADAPTER_ADDRESSES* p = buf; p; p = p->Next) {
if(p->IfType == IF_TYPE_TUNNEL) {
// Skip tunnel interface because Windows7 automatically setup
// this for IPv6.
continue;
}
PIP_ADAPTER_UNICAST_ADDRESS ucaddr = p->FirstUnicastAddress;
if(ucaddr) {
for(PIP_ADAPTER_UNICAST_ADDRESS i = ucaddr; i; i = i->Next) {
bool found = false;
switch(i->Address.iSockaddrLength) {
case sizeof(sockaddr_in): {
memcpy(&ad.storage, i->Address.lpSockaddr,
i->Address.iSockaddrLength);
uint32_t haddr = ntohl(ad.in.sin_addr.s_addr);
if(haddr != INADDR_LOOPBACK &&
(haddr < APIPA_IPV4_BEGIN || APIPA_IPV4_END <= haddr)) {
ipv4AddrConfigured = true;
found = true;
}
break;
}
case sizeof(sockaddr_in6):
memcpy(&ad.storage, i->Address.lpSockaddr,
i->Address.iSockaddrLength);
if(!IN6_IS_ADDR_LOOPBACK(&ad.in6.sin6_addr) &&
!IN6_IS_ADDR_LINKLOCAL(&ad.in6.sin6_addr)) {
ipv6AddrConfigured = true;
found = true;
}
break;
}
rv = getnameinfo(i->Address.lpSockaddr, i->Address.iSockaddrLength,
host, NI_MAXHOST, 0, 0, NI_NUMERICHOST);
if(rv == 0) {
if(found) {
A2_LOG_INFO(fmt("Found configured address: %s", host));
} else {
A2_LOG_INFO(fmt("Not considered: %s", host));
}
}
}
}
}
free(buf);
A2_LOG_INFO(fmt("IPv4 configured=%d, IPv6 configured=%d",
ipv4AddrConfigured, ipv6AddrConfigured));
#elif defined(HAVE_GETIFADDRS)
A2_LOG_INFO("Checking configured addresses");
ipv4AddrConfigured = false;
ipv6AddrConfigured = false;
ifaddrs* ifaddr = 0;
int rv;
rv = getifaddrs(&ifaddr);
if(rv == -1) {
int errNum = SOCKET_ERRNO;
A2_LOG_INFO(fmt("getifaddrs failed. Cause: %s", errorMsg(errNum).c_str()));
return;
}
auto_delete<ifaddrs*> ifaddrDeleter(ifaddr, freeifaddrs);
char host[NI_MAXHOST];
sockaddr_union ad;
for(ifaddrs* ifa = ifaddr; ifa; ifa = ifa->ifa_next) {
if(!ifa->ifa_addr) {
continue;
}
bool found = false;
size_t addrlen = 0;
switch(ifa->ifa_addr->sa_family) {
case AF_INET: {
addrlen = sizeof(sockaddr_in);
memcpy(&ad.storage, ifa->ifa_addr, addrlen);
if(ad.in.sin_addr.s_addr != htonl(INADDR_LOOPBACK)) {
ipv4AddrConfigured = true;
found = true;
}
break;
}
case AF_INET6: {
addrlen = sizeof(sockaddr_in6);
memcpy(&ad.storage, ifa->ifa_addr, addrlen);
if(!IN6_IS_ADDR_LOOPBACK(&ad.in6.sin6_addr) &&
!IN6_IS_ADDR_LINKLOCAL(&ad.in6.sin6_addr)) {
ipv6AddrConfigured = true;
found = true;
}
break;
}
default:
continue;
}
rv = getnameinfo(ifa->ifa_addr, addrlen, host, NI_MAXHOST, 0, 0,
NI_NUMERICHOST);
if(rv == 0) {
if(found) {
A2_LOG_INFO(fmt("Found configured address: %s", host));
} else {
A2_LOG_INFO(fmt("Not considered: %s", host));
}
}
}
A2_LOG_INFO(fmt("IPv4 configured=%d, IPv6 configured=%d",
ipv4AddrConfigured, ipv6AddrConfigured));
#else // !HAVE_GETIFADDRS
A2_LOG_INFO("getifaddrs is not available. Assume IPv4 and IPv6 addresses"
" are configured.");
#endif // !HAVE_GETIFADDRS
}
bool getIPv4AddrConfigured()
{
return ipv4AddrConfigured;
}
bool getIPv6AddrConfigured()
{
return ipv6AddrConfigured;
}
} // namespace net
} // namespace aria2