/* */ #include "SocketCore.h" #ifdef HAVE_IPHLPAPI_H # include #endif // HAVE_IPHLPAPI_H #include #ifdef HAVE_IFADDRS_H # include #endif // HAVE_IFADDRS_H #include #include #include "message.h" #include "DlRetryEx.h" #include "DlAbortEx.h" #include "fmt.h" #include "util.h" #include "TimeA2.h" #include "a2functional.h" #include "LogFactory.h" #include "A2STR.h" #ifdef ENABLE_SSL # include "TLSContext.h" # include "TLSSession.h" #endif // ENABLE_SSL namespace aria2 { #ifndef __MINGW32__ # define SOCKET_ERRNO (errno) #else # define SOCKET_ERRNO (WSAGetLastError()) #endif // __MINGW32__ #ifdef __MINGW32__ # define A2_EINPROGRESS WSAEWOULDBLOCK # define A2_EWOULDBLOCK WSAEWOULDBLOCK # define A2_EINTR WSAEINTR # define A2_WOULDBLOCK(e) (e == WSAEWOULDBLOCK) #else // !__MINGW32__ # define A2_EINPROGRESS EINPROGRESS # ifndef EWOULDBLOCK # define EWOULDBLOCK EAGAIN # endif // EWOULDBLOCK # define A2_EWOULDBLOCK EWOULDBLOCK # define A2_EINTR EINTR # if EWOULDBLOCK == EAGAIN # define A2_WOULDBLOCK(e) (e == EWOULDBLOCK) # else // EWOULDBLOCK != EAGAIN # define A2_WOULDBLOCK(e) (e == EWOULDBLOCK || e == EAGAIN) # endif // EWOULDBLOCK != EAGAIN #endif // !__MINGW32__ #ifdef __MINGW32__ # define CLOSE(X) ::closesocket(X) #else # define CLOSE(X) close(X) #endif // __MINGW32__ namespace { std::string errorMsg(int errNum) { #ifndef __MINGW32__ return util::safeStrerror(errNum); #else static char buf[256]; if (FormatMessage( FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, errNum, MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), (LPTSTR) &buf, sizeof(buf), NULL ) == 0) { snprintf(buf, sizeof(buf), EX_SOCKET_UNKNOWN_ERROR, errNum, errNum); } return buf; #endif // __MINGW32__ } } // namespace namespace { enum TlsState { // TLS object is not initialized. A2_TLS_NONE = 0, // TLS object is now handshaking. A2_TLS_HANDSHAKING = 2, // TLS object is now connected. A2_TLS_CONNECTED = 3 }; } // namespace int SocketCore::protocolFamily_ = AF_UNSPEC; std::vector > SocketCore::bindAddrs_; #ifdef ENABLE_SSL SharedHandle SocketCore::clTlsContext_; SharedHandle SocketCore::svTlsContext_; void SocketCore::setClientTLSContext (const SharedHandle& tlsContext) { clTlsContext_ = tlsContext; } void SocketCore::setServerTLSContext (const SharedHandle& tlsContext) { svTlsContext_ = tlsContext; } #endif // ENABLE_SSL SocketCore::SocketCore(int sockType) : sockType_(sockType), sockfd_(-1) { init(); } SocketCore::SocketCore(sock_t sockfd, int sockType) : sockType_(sockType), sockfd_(sockfd) { init(); } void SocketCore::init() { blocking_ = true; secure_ = A2_TLS_NONE; wantRead_ = false; wantWrite_ = false; } SocketCore::~SocketCore() { closeConnection(); } void SocketCore::create(int family, int protocol) { int errNum; closeConnection(); sock_t fd = socket(family, sockType_, protocol); errNum = SOCKET_ERRNO; if(fd == (sock_t) -1) { throw DL_ABORT_EX (fmt("Failed to create socket. Cause:%s", errorMsg(errNum).c_str())); } int sockopt = 1; if(setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (a2_sockopt_t) &sockopt, sizeof(sockopt)) < 0) { errNum = SOCKET_ERRNO; CLOSE(fd); throw DL_ABORT_EX (fmt("Failed to create socket. Cause:%s", errorMsg(errNum).c_str())); } sockfd_ = fd; } static sock_t bindInternal (int family, int socktype, int protocol, const struct sockaddr* addr, socklen_t addrlen, std::string& error) { int errNum; sock_t fd = socket(family, socktype, protocol); errNum = SOCKET_ERRNO; if(fd == (sock_t) -1) { error = errorMsg(errNum); return -1; } int sockopt = 1; if(setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (a2_sockopt_t) &sockopt, sizeof(sockopt)) < 0) { errNum = SOCKET_ERRNO; error = errorMsg(errNum); CLOSE(fd); return -1; } #ifdef IPV6_V6ONLY if(family == AF_INET6) { int sockopt = 1; if(setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, (a2_sockopt_t) &sockopt, sizeof(sockopt)) < 0) { errNum = SOCKET_ERRNO; error = errorMsg(errNum); CLOSE(fd); return -1; } } #endif // IPV6_V6ONLY if(::bind(fd, addr, addrlen) == -1) { errNum = SOCKET_ERRNO; error = errorMsg(errNum); CLOSE(fd); return -1; } return fd; } static sock_t bindTo (const char* host, uint16_t port, int family, int sockType, int getaddrinfoFlags, std::string& error) { struct addrinfo* res; int s = callGetaddrinfo(&res, host, util::uitos(port).c_str(), family, sockType, getaddrinfoFlags, 0); if(s) { error = gai_strerror(s); return -1; } WSAAPI_AUTO_DELETE resDeleter(res, freeaddrinfo); struct addrinfo* rp; for(rp = res; rp; rp = rp->ai_next) { sock_t fd = bindInternal(rp->ai_family, rp->ai_socktype, rp->ai_protocol, rp->ai_addr, rp->ai_addrlen, error); if(fd != (sock_t)-1) { return fd; } } return -1; } void SocketCore::bindWithFamily(uint16_t port, int family, int flags) { closeConnection(); std::string error; sock_t fd = bindTo(0, port, family, sockType_, flags, error); if(fd == (sock_t) -1) { throw DL_ABORT_EX(fmt(EX_SOCKET_BIND, error.c_str())); } else { sockfd_ = fd; } } void SocketCore::bind (const char* addr, uint16_t port, int family, int flags) { closeConnection(); std::string error; const char* addrp; if(addr && addr[0]) { addrp = addr; } else { addrp = 0; } if(!(flags&AI_PASSIVE) || bindAddrs_.empty()) { sock_t fd = bindTo(addrp, port, family, sockType_, flags, error); if(fd != (sock_t) -1) { sockfd_ = fd; } } else { for(std::vector >:: const_iterator i = bindAddrs_.begin(), eoi = bindAddrs_.end(); i != eoi; ++i) { char host[NI_MAXHOST]; int s; s = getnameinfo(&(*i).first.sa, (*i).second, host, NI_MAXHOST, 0, 0, NI_NUMERICHOST); if(s) { error = gai_strerror(s); continue; } if(addrp && strcmp(host, addrp) != 0) { error = "Given address and resolved address do not match."; continue; } sock_t fd = bindTo(host, port, family, sockType_, flags, error); if(fd != (sock_t)-1) { sockfd_ = fd; break; } } } if(sockfd_ == (sock_t) -1) { throw DL_ABORT_EX(fmt(EX_SOCKET_BIND, error.c_str())); } } void SocketCore::bind(uint16_t port, int flags) { bind(0, port, protocolFamily_, flags); } void SocketCore::bind(const struct sockaddr* addr, socklen_t addrlen) { closeConnection(); std::string error; sock_t fd = bindInternal(addr->sa_family, sockType_, 0, addr, addrlen, error); if(fd != (sock_t)-1) { sockfd_ = fd; } else { throw DL_ABORT_EX(fmt(EX_SOCKET_BIND, error.c_str())); } } void SocketCore::beginListen() { if(listen(sockfd_, 1) == -1) { int errNum = SOCKET_ERRNO; throw DL_ABORT_EX(fmt(EX_SOCKET_LISTEN, errorMsg(errNum).c_str())); } setNonBlockingMode(); } SharedHandle SocketCore::acceptConnection() const { sockaddr_union sockaddr; socklen_t len = sizeof(sockaddr); sock_t fd; while((fd = accept(sockfd_, &sockaddr.sa, &len)) == (sock_t) -1 && SOCKET_ERRNO == A2_EINTR); int errNum = SOCKET_ERRNO; if(fd == (sock_t) -1) { throw DL_ABORT_EX(fmt(EX_SOCKET_ACCEPT, errorMsg(errNum).c_str())); } SharedHandle sock(new SocketCore(fd, sockType_)); sock->setNonBlockingMode(); return sock; } int SocketCore::getAddrInfo(std::pair& addrinfo) const { sockaddr_union sockaddr; socklen_t len = sizeof(sockaddr); getAddrInfo(sockaddr, len); addrinfo = util::getNumericNameInfo(&sockaddr.sa, len); return sockaddr.storage.ss_family; } void SocketCore::getAddrInfo(sockaddr_union& sockaddr, socklen_t& len) const { if(getsockname(sockfd_, &sockaddr.sa, &len) == -1) { int errNum = SOCKET_ERRNO; throw DL_ABORT_EX(fmt(EX_SOCKET_GET_NAME, errorMsg(errNum).c_str())); } } int SocketCore::getAddressFamily() const { sockaddr_union sockaddr; socklen_t len = sizeof(sockaddr); getAddrInfo(sockaddr, len); return sockaddr.storage.ss_family; } int SocketCore::getPeerInfo(std::pair& peerinfo) const { sockaddr_union sockaddr; socklen_t len = sizeof(sockaddr); if(getpeername(sockfd_, &sockaddr.sa, &len) == -1) { int errNum = SOCKET_ERRNO; throw DL_ABORT_EX(fmt(EX_SOCKET_GET_NAME, errorMsg(errNum).c_str())); } peerinfo = util::getNumericNameInfo(&sockaddr.sa, len); return sockaddr.storage.ss_family; } void SocketCore::establishConnection(const std::string& host, uint16_t port, bool tcpNodelay) { closeConnection(); std::string error; struct addrinfo* res; int s; s = callGetaddrinfo(&res, host.c_str(), util::uitos(port).c_str(), protocolFamily_, sockType_, 0, 0); if(s) { throw DL_ABORT_EX(fmt(EX_RESOLVE_HOSTNAME, host.c_str(), gai_strerror(s))); } WSAAPI_AUTO_DELETE resDeleter(res, freeaddrinfo); struct addrinfo* rp; int errNum; for(rp = res; rp; rp = rp->ai_next) { sock_t fd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); errNum = SOCKET_ERRNO; if(fd == (sock_t) -1) { error = errorMsg(errNum); continue; } int sockopt = 1; if(setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (a2_sockopt_t) &sockopt, sizeof(sockopt)) < 0) { errNum = SOCKET_ERRNO; error = errorMsg(errNum); CLOSE(fd); continue; } if(!bindAddrs_.empty()) { bool bindSuccess = false; for(std::vector >:: const_iterator i = bindAddrs_.begin(), eoi = bindAddrs_.end(); i != eoi; ++i) { if(::bind(fd, &(*i).first.sa, (*i).second) == -1) { errNum = SOCKET_ERRNO; error = errorMsg(errNum); A2_LOG_DEBUG(fmt(EX_SOCKET_BIND, error.c_str())); } else { bindSuccess = true; break; } } if(!bindSuccess) { CLOSE(fd); continue; } } sockfd_ = fd; // make socket non-blocking mode setNonBlockingMode(); if(tcpNodelay) { setTcpNodelay(true); } if(connect(fd, rp->ai_addr, rp->ai_addrlen) == -1 && SOCKET_ERRNO != A2_EINPROGRESS) { errNum = SOCKET_ERRNO; error = errorMsg(errNum); CLOSE(sockfd_); sockfd_ = (sock_t) -1; continue; } // TODO at this point, connection may not be established and it may fail // later. In such case, next ai_addr should be tried. break; } if(sockfd_ == (sock_t) -1) { throw DL_ABORT_EX(fmt(EX_SOCKET_CONNECT, host.c_str(), error.c_str())); } } void SocketCore::setSockOpt (int level, int optname, void* optval, socklen_t optlen) { if(setsockopt(sockfd_, level, optname, (a2_sockopt_t)optval, optlen) < 0) { int errNum = SOCKET_ERRNO; throw DL_ABORT_EX(fmt(EX_SOCKET_SET_OPT, errorMsg(errNum).c_str())); } } void SocketCore::setMulticastInterface(const std::string& localAddr) { in_addr addr; if(localAddr.empty()) { addr.s_addr = htonl(INADDR_ANY); } else { if(inetPton(AF_INET, localAddr.c_str(), &addr) != 0) { throw DL_ABORT_EX(fmt("%s is not valid IPv4 numeric address", localAddr.c_str())); } } setSockOpt(IPPROTO_IP, IP_MULTICAST_IF, &addr, sizeof(addr)); } void SocketCore::setMulticastTtl(unsigned char ttl) { setSockOpt(IPPROTO_IP, IP_MULTICAST_TTL, &ttl, sizeof(ttl)); } void SocketCore::setMulticastLoop(unsigned char loop) { setSockOpt(IPPROTO_IP, IP_MULTICAST_LOOP, &loop, sizeof(loop)); } void SocketCore::joinMulticastGroup (const std::string& multicastAddr, uint16_t multicastPort, const std::string& localAddr) { in_addr multiAddr; if(inetPton(AF_INET, multicastAddr.c_str(), &multiAddr) != 0) { throw DL_ABORT_EX(fmt("%s is not valid IPv4 numeric address", multicastAddr.c_str())); } in_addr ifAddr; if(localAddr.empty()) { ifAddr.s_addr = htonl(INADDR_ANY); } else { if(inetPton(AF_INET, localAddr.c_str(), &ifAddr) != 0) { throw DL_ABORT_EX(fmt("%s is not valid IPv4 numeric address", localAddr.c_str())); } } struct ip_mreq mreq; memset(&mreq, 0, sizeof(mreq)); mreq.imr_multiaddr = multiAddr; mreq.imr_interface = ifAddr; setSockOpt(IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(mreq)); } void SocketCore::setTcpNodelay(bool f) { int val = f; setSockOpt(IPPROTO_TCP, TCP_NODELAY, &val, sizeof(val)); } void SocketCore::setNonBlockingMode() { #ifdef __MINGW32__ static u_long flag = 1; if (::ioctlsocket(sockfd_, FIONBIO, &flag) == -1) { int errNum = SOCKET_ERRNO; throw DL_ABORT_EX(fmt(EX_SOCKET_NONBLOCKING, errorMsg(errNum).c_str())); } #else int flags; while((flags = fcntl(sockfd_, F_GETFL, 0)) == -1 && errno == EINTR); // TODO add error handling while(fcntl(sockfd_, F_SETFL, flags|O_NONBLOCK) == -1 && errno == EINTR); #endif // __MINGW32__ blocking_ = false; } void SocketCore::setBlockingMode() { #ifdef __MINGW32__ static u_long flag = 0; if (::ioctlsocket(sockfd_, FIONBIO, &flag) == -1) { int errNum = SOCKET_ERRNO; throw DL_ABORT_EX(fmt(EX_SOCKET_BLOCKING, errorMsg(errNum).c_str())); } #else int flags; while((flags = fcntl(sockfd_, F_GETFL, 0)) == -1 && errno == EINTR); // TODO add error handling while(fcntl(sockfd_, F_SETFL, flags&(~O_NONBLOCK)) == -1 && errno == EINTR); #endif // __MINGW32__ blocking_ = true; } void SocketCore::closeConnection() { #ifdef ENABLE_SSL if(tlsSession_) { tlsSession_->closeConnection(); tlsSession_.reset(); } #endif // ENABLE_SSL if(sockfd_ != (sock_t) -1) { shutdown(sockfd_, SHUT_WR); CLOSE(sockfd_); sockfd_ = -1; } } #ifndef __MINGW32__ # define CHECK_FD(fd) \ if(fd < 0 || FD_SETSIZE <= fd) { \ logger_->warn("Detected file descriptor >= FD_SETSIZE or < 0. " \ "Download may slow down or fail."); \ return false; \ } #endif // !__MINGW32__ bool SocketCore::isWritable(time_t timeout) { #ifdef HAVE_POLL struct pollfd p; p.fd = sockfd_; p.events = POLLOUT; int r; while((r = poll(&p, 1, timeout*1000)) == -1 && errno == EINTR); int errNum = SOCKET_ERRNO; if(r > 0) { return p.revents&(POLLOUT|POLLHUP|POLLERR); } else if(r == 0) { return false; } else { throw DL_RETRY_EX(fmt(EX_SOCKET_CHECK_WRITABLE, errorMsg(errNum).c_str())); } #else // !HAVE_POLL # ifndef __MINGW32__ CHECK_FD(sockfd_); # endif // !__MINGW32__ fd_set fds; FD_ZERO(&fds); FD_SET(sockfd_, &fds); struct timeval tv; tv.tv_sec = timeout; tv.tv_usec = 0; int r = select(sockfd_+1, NULL, &fds, NULL, &tv); int errNum = SOCKET_ERRNO; if(r == 1) { return true; } else if(r == 0) { // time out return false; } else { if(errNum == A2_EINPROGRESS || errNum == A2_EINTR) { return false; } else { throw DL_RETRY_EX (fmt(EX_SOCKET_CHECK_WRITABLE, errorMsg(errNum).c_str())); } } #endif // !HAVE_POLL } bool SocketCore::isReadable(time_t timeout) { #ifdef HAVE_POLL struct pollfd p; p.fd = sockfd_; p.events = POLLIN; int r; while((r = poll(&p, 1, timeout*1000)) == -1 && errno == EINTR); int errNum = SOCKET_ERRNO; if(r > 0) { return p.revents&(POLLIN|POLLHUP|POLLERR); } else if(r == 0) { return false; } else { throw DL_RETRY_EX(fmt(EX_SOCKET_CHECK_READABLE, errorMsg(errNum).c_str())); } #else // !HAVE_POLL # ifndef __MINGW32__ CHECK_FD(sockfd_); # endif // !__MINGW32__ fd_set fds; FD_ZERO(&fds); FD_SET(sockfd_, &fds); struct timeval tv; tv.tv_sec = timeout; tv.tv_usec = 0; int r = select(sockfd_+1, &fds, NULL, NULL, &tv); int errNum = SOCKET_ERRNO; if(r == 1) { return true; } else if(r == 0) { // time out return false; } else { if(errNum == A2_EINPROGRESS || errNum == A2_EINTR) { return false; } else { throw DL_RETRY_EX (fmt(EX_SOCKET_CHECK_READABLE, errorMsg(errNum).c_str())); } } #endif // !HAVE_POLL } ssize_t SocketCore::writeVector(a2iovec *iov, size_t iovcnt) { ssize_t ret = 0; wantRead_ = false; wantWrite_ = false; if(!secure_) { #ifdef __MINGW32__ DWORD nsent; int rv = WSASend(sockfd_, iov, iovcnt, &nsent, 0, 0, 0); if(rv == 0) { ret = nsent; } else { ret = -1; } #else // !__MINGW32__ while((ret = writev(sockfd_, iov, iovcnt)) == -1 && SOCKET_ERRNO == A2_EINTR); #endif // !__MINGW32__ int errNum = SOCKET_ERRNO; if(ret == -1) { if(A2_WOULDBLOCK(errNum)) { wantWrite_ = true; ret = 0; } else { throw DL_RETRY_EX(fmt(EX_SOCKET_SEND, errorMsg(errNum).c_str())); } } } else { // For SSL/TLS, we could not use writev, so just iterate vector // and write the data in normal way. for(size_t i = 0; i < iovcnt; ++i) { ssize_t rv = writeData(iov[i].A2IOVEC_BASE, iov[i].A2IOVEC_LEN); if(rv == 0) { break; } ret += rv; } } return ret; } ssize_t SocketCore::writeData(const void* data, size_t len) { ssize_t ret = 0; wantRead_ = false; wantWrite_ = false; if(!secure_) { // Cast for Windows send() while((ret = send(sockfd_, reinterpret_cast(data), len, 0)) == -1 && SOCKET_ERRNO == A2_EINTR); int errNum = SOCKET_ERRNO; if(ret == -1) { if(A2_WOULDBLOCK(errNum)) { wantWrite_ = true; ret = 0; } else { throw DL_RETRY_EX(fmt(EX_SOCKET_SEND, errorMsg(errNum).c_str())); } } } else { #ifdef ENABLE_SSL ret = tlsSession_->writeData(data, len); if(ret < 0) { if(ret == TLS_ERR_WOULDBLOCK) { if(tlsSession_->checkDirection() == TLS_WANT_READ) { wantRead_ = true; } else { wantWrite_ = true; } ret = 0; } else { throw DL_RETRY_EX(fmt(EX_SOCKET_SEND, tlsSession_->getLastErrorString().c_str())); } } #endif // ENABLE_SSL } return ret; } void SocketCore::readData(void* data, size_t& len) { ssize_t ret = 0; wantRead_ = false; wantWrite_ = false; if(!secure_) { // Cast for Windows recv() while((ret = recv(sockfd_, reinterpret_cast(data), len, 0)) == -1 && SOCKET_ERRNO == A2_EINTR); int errNum = SOCKET_ERRNO; if(ret == -1) { if(A2_WOULDBLOCK(errNum)) { wantRead_ = true; ret = 0; } else { throw DL_RETRY_EX(fmt(EX_SOCKET_RECV, errorMsg(errNum).c_str())); } } } else { #ifdef ENABLE_SSL ret = tlsSession_->readData(data, len); if(ret < 0) { if(ret == TLS_ERR_WOULDBLOCK) { if(tlsSession_->checkDirection() == TLS_WANT_READ) { wantRead_ = true; } else { wantWrite_ = true; } ret = 0; } else { throw DL_RETRY_EX(fmt(EX_SOCKET_SEND, tlsSession_->getLastErrorString().c_str())); } } #endif // ENABLE_SSL } len = ret; } #ifdef ENABLE_SSL bool SocketCore::tlsAccept() { return tlsHandshake(svTlsContext_.get(), A2STR::NIL); } bool SocketCore::tlsConnect(const std::string& hostname) { return tlsHandshake(clTlsContext_.get(), hostname); } bool SocketCore::tlsHandshake(TLSContext* tlsctx, const std::string& hostname) { int rv = 0; std::string handshakeError; wantRead_ = false; wantWrite_ = false; switch(secure_) { case A2_TLS_NONE: tlsSession_.reset(TLSSession::make(tlsctx)); rv = tlsSession_->init(sockfd_); if(rv != TLS_ERR_OK) { std::string error = tlsSession_->getLastErrorString(); tlsSession_.reset(); throw DL_ABORT_EX(fmt(EX_SSL_INIT_FAILURE, error.c_str())); } // Check hostname is not numeric and it includes ".". Setting // "localhost" will produce TLS alert with GNUTLS. if(tlsctx->getSide() == TLS_CLIENT && !util::isNumericHost(hostname) && hostname.find(".") != std::string::npos) { rv = tlsSession_->setSNIHostname(hostname); if(rv != TLS_ERR_OK) { throw DL_ABORT_EX(fmt(EX_SSL_INIT_FAILURE, tlsSession_->getLastErrorString().c_str())); } } secure_ = A2_TLS_HANDSHAKING; // Fall through case A2_TLS_HANDSHAKING: if(tlsctx->getSide() == TLS_CLIENT) { rv = tlsSession_->tlsConnect(hostname, handshakeError); } else { rv = tlsSession_->tlsAccept(); } if(rv == TLS_ERR_OK) { secure_ = A2_TLS_CONNECTED; } else if(rv == TLS_ERR_WOULDBLOCK) { if(tlsSession_->checkDirection() == TLS_WANT_READ) { wantRead_ = true; } else { wantWrite_ = true; } return false; } else { throw DL_ABORT_EX(fmt("SSL/TLS handshake failure: %s", handshakeError.empty() ? tlsSession_->getLastErrorString().c_str() : handshakeError.c_str())); } break; default: break; } return true; } #endif // ENABLE_SSL ssize_t SocketCore::writeData(const void* data, size_t len, const std::string& host, uint16_t port) { wantRead_ = false; wantWrite_ = false; struct addrinfo* res; int s; s = callGetaddrinfo(&res, host.c_str(), util::uitos(port).c_str(), protocolFamily_, sockType_, 0, 0); if(s) { throw DL_ABORT_EX(fmt(EX_SOCKET_SEND, gai_strerror(s))); } WSAAPI_AUTO_DELETE resDeleter(res, freeaddrinfo); struct addrinfo* rp; ssize_t r = -1; int errNum = 0; for(rp = res; rp; rp = rp->ai_next) { // Cast for Windows sendto() while((r = sendto(sockfd_, reinterpret_cast(data), len, 0, rp->ai_addr, rp->ai_addrlen)) == -1 && A2_EINTR == SOCKET_ERRNO); errNum = SOCKET_ERRNO; if(r == static_cast(len)) { break; } if(r == -1 && A2_WOULDBLOCK(errNum)) { wantWrite_ = true; r = 0; break; } } if(r == -1) { throw DL_ABORT_EX(fmt(EX_SOCKET_SEND, errorMsg(errNum).c_str())); } return r; } ssize_t SocketCore::readDataFrom(void* data, size_t len, std::pair& sender) { wantRead_ = false; wantWrite_ = false; sockaddr_union sockaddr; socklen_t sockaddrlen = sizeof(sockaddr); ssize_t r; // Cast for Windows recvfrom() while((r = recvfrom(sockfd_, reinterpret_cast(data), len, 0, &sockaddr.sa, &sockaddrlen)) == -1 && A2_EINTR == SOCKET_ERRNO); int errNum = SOCKET_ERRNO; if(r == -1) { if(A2_WOULDBLOCK(errNum)) { wantRead_ = true; r = 0; } else { throw DL_RETRY_EX(fmt(EX_SOCKET_RECV, errorMsg(errNum).c_str())); } } else { sender = util::getNumericNameInfo(&sockaddr.sa, sockaddrlen); } return r; } std::string SocketCore::getSocketError() const { int error; socklen_t optlen = sizeof(error); if(getsockopt(sockfd_, SOL_SOCKET, SO_ERROR, (a2_sockopt_t) &error, &optlen) == -1) { int errNum = SOCKET_ERRNO; throw DL_ABORT_EX (fmt("Failed to get socket error: %s", errorMsg(errNum).c_str())); } if(error != 0) { return errorMsg(error); } else { return ""; } } bool SocketCore::wantRead() const { return wantRead_; } bool SocketCore::wantWrite() const { return wantWrite_; } void SocketCore::bindAddress(const std::string& iface) { std::vector > bindAddrs; getInterfaceAddress(bindAddrs, iface, protocolFamily_); if(bindAddrs.empty()) { throw DL_ABORT_EX (fmt(MSG_INTERFACE_NOT_FOUND, iface.c_str(), "not available")); } else { bindAddrs_.swap(bindAddrs); for(std::vector >:: const_iterator i = bindAddrs_.begin(), eoi = bindAddrs_.end(); i != eoi; ++i) { char host[NI_MAXHOST]; int s; s = getnameinfo(&(*i).first.sa, (*i).second, host, NI_MAXHOST, 0, 0, NI_NUMERICHOST); if(s == 0) { A2_LOG_DEBUG(fmt("Sockets will bind to %s", host)); } } } } void getInterfaceAddress (std::vector >& ifAddrs, const std::string& iface, int family, int aiFlags) { A2_LOG_DEBUG(fmt("Finding interface %s", iface.c_str())); #ifdef HAVE_GETIFADDRS // First find interface in interface addresses struct ifaddrs* ifaddr = 0; if(getifaddrs(&ifaddr) == -1) { int errNum = SOCKET_ERRNO; A2_LOG_INFO(fmt(MSG_INTERFACE_NOT_FOUND, iface.c_str(), errorMsg(errNum).c_str())); } else { auto_delete ifaddrDeleter(ifaddr, freeifaddrs); for(ifaddrs* ifa = ifaddr; ifa; ifa = ifa->ifa_next) { if(!ifa->ifa_addr) { continue; } int iffamily = ifa->ifa_addr->sa_family; if(family == AF_UNSPEC) { if(iffamily != AF_INET && iffamily != AF_INET6) { continue; } } else if(family == AF_INET) { if(iffamily != AF_INET) { continue; } } else if(family == AF_INET6) { if(iffamily != AF_INET6) { continue; } } else { continue; } if(strcmp(iface.c_str(), ifa->ifa_name) == 0) { socklen_t bindAddrLen = iffamily == AF_INET ? sizeof(sockaddr_in) : sizeof(sockaddr_in6); sockaddr_union bindAddr; memset(&bindAddr, 0, sizeof(bindAddr)); memcpy(&bindAddr.storage, ifa->ifa_addr, bindAddrLen); ifAddrs.push_back(std::make_pair(bindAddr, bindAddrLen)); } } } #endif // HAVE_GETIFADDRS if(ifAddrs.empty()) { addrinfo* res; int s; s = callGetaddrinfo(&res, iface.c_str(), 0, family, SOCK_STREAM, aiFlags,0); if(s) { A2_LOG_INFO(fmt(MSG_INTERFACE_NOT_FOUND, iface.c_str(), gai_strerror(s))); } else { WSAAPI_AUTO_DELETE resDeleter(res, freeaddrinfo); addrinfo* rp; for(rp = res; rp; rp = rp->ai_next) { // Try to bind socket with this address. If it fails, the // address is not for this machine. try { SocketCore socket; socket.bind(rp->ai_addr, rp->ai_addrlen); sockaddr_union bindAddr; memset(&bindAddr, 0, sizeof(bindAddr)); memcpy(&bindAddr.storage, rp->ai_addr, rp->ai_addrlen); ifAddrs.push_back(std::make_pair(bindAddr, rp->ai_addrlen)); } catch(RecoverableException& e) { continue; } } } } } namespace { int defaultAIFlags = DEFAULT_AI_FLAGS; int getDefaultAIFlags() { return defaultAIFlags; } } // namespace void setDefaultAIFlags(int flags) { defaultAIFlags = flags; } int callGetaddrinfo (struct addrinfo** resPtr, const char* host, const char* service, int family, int sockType, int flags, int protocol) { struct addrinfo hints; memset(&hints, 0, sizeof(hints)); hints.ai_family = family; hints.ai_socktype = sockType; hints.ai_flags = getDefaultAIFlags(); hints.ai_flags |= flags; hints.ai_protocol = protocol; return getaddrinfo(host, service, &hints, resPtr); } int inetNtop(int af, const void* src, char* dst, socklen_t size) { int s; sockaddr_union su; memset(&su, 0, sizeof(su)); if(af == AF_INET) { su.in.sin_family = AF_INET; #ifdef HAVE_SOCKADDR_IN_SIN_LEN su.in.sin_len = sizeof(su.in); #endif // HAVE_SOCKADDR_IN_SIN_LEN memcpy(&su.in.sin_addr, src, sizeof(su.in.sin_addr)); s = getnameinfo(&su.sa, sizeof(su.in), dst, size, 0, 0, NI_NUMERICHOST); } else if(af == AF_INET6) { su.in6.sin6_family = AF_INET6; #ifdef HAVE_SOCKADDR_IN6_SIN6_LEN su.in6.sin6_len = sizeof(su.in6); #endif // HAVE_SOCKADDR_IN6_SIN6_LEN memcpy(&su.in6.sin6_addr, src, sizeof(su.in6.sin6_addr)); s = getnameinfo(&su.sa, sizeof(su.in6), dst, size, 0, 0, NI_NUMERICHOST); } else { s = EAI_FAMILY; } return s; } int inetPton(int af, const char* src, void* dst) { union { uint32_t ipv4_addr; unsigned char ipv6_addr[16]; } binaddr; size_t len = net::getBinAddr(binaddr.ipv6_addr, src); if(af == AF_INET) { if(len != 4) { return -1; } in_addr* addr = reinterpret_cast(dst); addr->s_addr = binaddr.ipv4_addr; } else if(af == AF_INET6) { if(len != 16) { return -1; } in6_addr* addr = reinterpret_cast(dst); memcpy(addr->s6_addr, binaddr.ipv6_addr, sizeof(addr->s6_addr)); } else { return -1; } return 0; } namespace net { size_t getBinAddr(void* dest, const std::string& ip) { size_t len = 0; addrinfo* res; if(callGetaddrinfo(&res, ip.c_str(), 0, AF_UNSPEC, 0, AI_NUMERICHOST, 0) != 0) { return len; } WSAAPI_AUTO_DELETE resDeleter(res, freeaddrinfo); for(addrinfo* rp = res; rp; rp = rp->ai_next) { sockaddr_union su; memcpy(&su, rp->ai_addr, rp->ai_addrlen); if(rp->ai_family == AF_INET) { len = sizeof(in_addr); memcpy(dest, &(su.in.sin_addr), len); break; } else if(rp->ai_family == AF_INET6) { len = sizeof(in6_addr); memcpy(dest, &(su.in6.sin6_addr), len); break; } } return len; } bool verifyHostname(const std::string& hostname, const std::vector& dnsNames, const std::vector& ipAddrs, const std::string& commonName) { if(util::isNumericHost(hostname)) { if(ipAddrs.empty()) { return commonName == hostname; } // We need max 16 bytes to store IPv6 address. unsigned char binAddr[16]; size_t addrLen = getBinAddr(binAddr, hostname); if(addrLen == 0) { return false; } for(std::vector::const_iterator i = ipAddrs.begin(), eoi = ipAddrs.end(); i != eoi; ++i) { if(addrLen == (*i).size() && memcmp(binAddr, (*i).c_str(), addrLen) == 0) { return true; } } } else { if(dnsNames.empty()) { return util::tlsHostnameMatch(commonName, hostname); } for(std::vector::const_iterator i = dnsNames.begin(), eoi = dnsNames.end(); i != eoi; ++i) { if(util::tlsHostnameMatch(*i, hostname)) { return true; } } } return false; } namespace { bool ipv4AddrConfigured = true; bool ipv6AddrConfigured = true; } // namespace #ifdef __MINGW32__ namespace { const uint32_t APIPA_IPV4_BEGIN = 2851995649u; // 169.254.0.1 const uint32_t APIPA_IPV4_END = 2852061183u; // 169.254.255.255 } // namespace #endif // __MINGW32__ void checkAddrconfig() { #ifdef __MINGW32__ A2_LOG_INFO("Checking configured addresses"); ULONG bufsize = 15*1024; ULONG retval = 0; IP_ADAPTER_ADDRESSES* buf = 0; int numTry = 0; const int MAX_TRY = 3; do { buf = reinterpret_cast(malloc(bufsize)); retval = GetAdaptersAddresses(AF_UNSPEC, 0, 0, buf, &bufsize); if(retval == ERROR_BUFFER_OVERFLOW) { free(buf); buf = 0; } else { break; } } while(retval == ERROR_BUFFER_OVERFLOW && numTry < MAX_TRY); if(retval != NO_ERROR) { A2_LOG_INFO("GetAdaptersAddresses failed. Assume both IPv4 and IPv6 " " addresses are configured."); return; } ipv4AddrConfigured = false; ipv6AddrConfigured = false; char host[NI_MAXHOST]; sockaddr_union ad; int rv; for(IP_ADAPTER_ADDRESSES* p = buf; p; p = p->Next) { if(p->IfType == IF_TYPE_TUNNEL) { // Skip tunnel interface because Windows7 automatically setup // this for IPv6. continue; } PIP_ADAPTER_UNICAST_ADDRESS ucaddr = p->FirstUnicastAddress; if(ucaddr) { for(PIP_ADAPTER_UNICAST_ADDRESS i = ucaddr; i; i = i->Next) { bool found = false; switch(i->Address.iSockaddrLength) { case sizeof(sockaddr_in): { memcpy(&ad.storage, i->Address.lpSockaddr, i->Address.iSockaddrLength); uint32_t haddr = ntohl(ad.in.sin_addr.s_addr); if(haddr != INADDR_LOOPBACK && (haddr < APIPA_IPV4_BEGIN || APIPA_IPV4_END <= haddr)) { ipv4AddrConfigured = true; found = true; } break; } case sizeof(sockaddr_in6): memcpy(&ad.storage, i->Address.lpSockaddr, i->Address.iSockaddrLength); if(!IN6_IS_ADDR_LOOPBACK(&ad.in6.sin6_addr) && !IN6_IS_ADDR_LINKLOCAL(&ad.in6.sin6_addr)) { ipv6AddrConfigured = true; found = true; } break; } rv = getnameinfo(i->Address.lpSockaddr, i->Address.iSockaddrLength, host, NI_MAXHOST, 0, 0, NI_NUMERICHOST); if(rv == 0) { if(found) { A2_LOG_INFO(fmt("Found configured address: %s", host)); } else { A2_LOG_INFO(fmt("Not considered: %s", host)); } } } } } free(buf); A2_LOG_INFO(fmt("IPv4 configured=%d, IPv6 configured=%d", ipv4AddrConfigured, ipv6AddrConfigured)); #elif defined(HAVE_GETIFADDRS) A2_LOG_INFO("Checking configured addresses"); ipv4AddrConfigured = false; ipv6AddrConfigured = false; ifaddrs* ifaddr = 0; int rv; rv = getifaddrs(&ifaddr); if(rv == -1) { int errNum = SOCKET_ERRNO; A2_LOG_INFO(fmt("getifaddrs failed. Cause: %s", errorMsg(errNum).c_str())); return; } auto_delete ifaddrDeleter(ifaddr, freeifaddrs); char host[NI_MAXHOST]; sockaddr_union ad; for(ifaddrs* ifa = ifaddr; ifa; ifa = ifa->ifa_next) { if(!ifa->ifa_addr) { continue; } bool found = false; size_t addrlen = 0; switch(ifa->ifa_addr->sa_family) { case AF_INET: { addrlen = sizeof(sockaddr_in); memcpy(&ad.storage, ifa->ifa_addr, addrlen); if(ad.in.sin_addr.s_addr != htonl(INADDR_LOOPBACK)) { ipv4AddrConfigured = true; found = true; } break; } case AF_INET6: { addrlen = sizeof(sockaddr_in6); memcpy(&ad.storage, ifa->ifa_addr, addrlen); if(!IN6_IS_ADDR_LOOPBACK(&ad.in6.sin6_addr) && !IN6_IS_ADDR_LINKLOCAL(&ad.in6.sin6_addr)) { ipv6AddrConfigured = true; found = true; } break; } default: continue; } rv = getnameinfo(ifa->ifa_addr, addrlen, host, NI_MAXHOST, 0, 0, NI_NUMERICHOST); if(rv == 0) { if(found) { A2_LOG_INFO(fmt("Found configured address: %s", host)); } else { A2_LOG_INFO(fmt("Not considered: %s", host)); } } } A2_LOG_INFO(fmt("IPv4 configured=%d, IPv6 configured=%d", ipv4AddrConfigured, ipv6AddrConfigured)); #else // !HAVE_GETIFADDRS A2_LOG_INFO("getifaddrs is not available. Assume IPv4 and IPv6 addresses" " are configured."); #endif // !HAVE_GETIFADDRS } bool getIPv4AddrConfigured() { return ipv4AddrConfigured; } bool getIPv6AddrConfigured() { return ipv6AddrConfigured; } } // namespace net } // namespace aria2