InternLM/internlm/model/utils.py

208 lines
6.9 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from typing import Optional
import torch
import torch.nn.functional as F
from flash_attn.ops.fused_dense import FusedDenseFunc
from flash_attn.utils.distributed import (
all_gather_raw,
all_reduce_raw,
reduce_scatter_raw,
)
from torch import Tensor
from torch.cuda.amp import custom_bwd
from torch.distributed import ProcessGroup
from internlm.core.context import global_context as gpc
from internlm.utils.logger import get_logger
logger = get_logger(__file__)
def _split(input_, parallel_mode, dim=-1):
# skip if only one rank involved
world_size = gpc.get_world_size(parallel_mode)
if world_size == 1:
return input_
# Split along last dimension.
dim_size = input_.size(dim)
assert dim_size % world_size == 0, (
f"The dimension to split ({dim_size}) is not a multiple of world size ({world_size}), "
f"cannot split tensor evenly"
)
tensor_list = torch.split(input_, dim_size // world_size, dim=dim)
rank = gpc.get_local_rank(parallel_mode)
output = tensor_list[rank].contiguous()
return output
def _gather(input_, parallel_mode, dim=-1):
# skip if only one rank involved
world_size = gpc.get_world_size(parallel_mode)
if world_size == 1:
return input_
# all gather
rank = gpc.get_local_rank(parallel_mode)
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
tensor_list[rank] = input_
group = gpc.get_cpu_group(parallel_mode) if input_.device.type == "cpu" else gpc.get_group(parallel_mode)
torch.distributed.all_gather(tensor_list, input_, group=group)
# concat
output = torch.cat(tensor_list, dim=dim).contiguous()
return output
class _GatherForwardSplitBackward(torch.autograd.Function):
"""Gather the input from model parallel region and concatenate.
Args:
input_: input matrix.
parallel_mode: parallel mode.
dim: dimension
"""
@staticmethod
def symbolic(input_):
return _gather(input_, parallel_mode=None)
@staticmethod
def forward(ctx, input_, parallel_mode, dim):
ctx.mode = parallel_mode
ctx.dim = dim
return _gather(input_, parallel_mode, dim)
@staticmethod
def backward(ctx, grad_output):
return _split(grad_output, ctx.mode, ctx.dim), None, None
def gather_forward_split_backward(input_, parallel_mode, dim):
return _GatherForwardSplitBackward.apply(input_, parallel_mode, dim)
def linear_bias_wgrad_torch(input, grad_output, has_d_bias):
assert input.dtype == grad_output.dtype
grad_weight = torch.matmul(grad_output.t(), input)
grad_bias = grad_output.sum(dim=0) if has_d_bias else None
return grad_weight, grad_bias
# adpated from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/ops/fused_dense.py
class FusedDenseFuncTorch(FusedDenseFunc):
@staticmethod
@custom_bwd
def backward(ctx, grad_output, *args):
grad_output = grad_output.contiguous()
if ctx.return_residual:
(grad_input,) = args
grad_input = grad_input.contiguous()
process_group = ctx.process_group
sequence_parallel = ctx.sequence_parallel
if ctx.compute_weight_gradient:
x, weight = ctx.saved_tensors
if process_group is not None and sequence_parallel:
total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
else:
total_x = x
else:
(weight,) = ctx.saved_tensors
total_x = None
batch_shape = grad_output.shape[:-1]
batch_dim = batch_shape.numel()
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
if ctx.needs_input_grad[0]:
if not ctx.return_residual:
grad_input = F.linear(grad_output, weight.t())
else:
grad_input = torch.addmm(grad_input.reshape(batch_dim, grad_input.shape[-1]), grad_output, weight)
grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1])
if process_group is not None:
reduce_fn = reduce_scatter_raw if sequence_parallel else all_reduce_raw
grad_input, handle_grad_input = reduce_fn(grad_input, process_group, async_op=True)
else:
grad_input = None
if ctx.needs_input_grad[1]:
assert ctx.compute_weight_gradient
if process_group is not None and sequence_parallel:
handle_x.wait()
# we remove the cuda independence, which is different from flash_attn.
grad_weight, grad_bias = linear_bias_wgrad_torch(
total_x.reshape(batch_dim, total_x.shape[-1]), grad_output, ctx.needs_input_grad[2]
)
else:
grad_weight = None
grad_bias = grad_output if ctx.needs_input_grad[2] else None
if process_group is not None and ctx.needs_input_grad[0]:
handle_grad_input.wait()
return grad_input, grad_weight, grad_bias, None, None, None
def fused_dense_func_torch(
x: Tensor,
weight: Tensor,
bias: Optional[Tensor] = None,
return_residual: bool = False,
process_group: Optional[ProcessGroup] = None,
sequence_parallel: bool = True,
):
dtype_eligible = x.dtype in [torch.float16, torch.bfloat16] or (
x.dtype == torch.float32 and torch.is_autocast_enabled()
)
if x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and dtype_eligible:
return FusedDenseFunc.apply(x, weight, bias, return_residual, process_group, sequence_parallel)
else:
return FusedDenseFuncTorch.apply(x, weight, bias, return_residual, process_group, sequence_parallel)
class _SplitForwardGatherBackward(torch.autograd.Function):
"""
Split the input and keep only the corresponding chuck to the rank.
Args:
input_: input matrix.
parallel_mode: parallel mode.
dim: dimension
"""
@staticmethod
def symbolic(graph, input_):
return _split(input_)
@staticmethod
def forward(ctx, input_, parallel_mode, dim):
ctx.mode = parallel_mode
ctx.dim = dim
return _split(input_, parallel_mode, dim)
@staticmethod
def backward(ctx, grad_output):
return _gather(grad_output, ctx.mode, ctx.dim), None, None
def split_forward_gather_backward(input_, parallel_mode, dim):
return _SplitForwardGatherBackward.apply(input_, parallel_mode, dim)
def try_import_RMSNorm():
"""
Try import MixFusedRMSNorm from apex, if failed, return our RMSNorm
"""
try:
from apex.normalization.fused_layer_norm import MixedFusedRMSNorm as RMSNorm
return RMSNorm
except ModuleNotFoundError:
logger.warn("The torch implementation for MixFusedRMSNorm is slower than apex. Please note this!")
from internlm.model.norm import RMSNormTorch as RMSNorm
return RMSNorm