#!/usr/bin/env python # -*- encoding: utf-8 -*- from typing import Optional import torch import torch.nn.functional as F from flash_attn.ops.fused_dense import FusedDenseFunc from flash_attn.utils.distributed import ( all_gather_raw, all_reduce_raw, reduce_scatter_raw, ) from torch import Tensor from torch.cuda.amp import custom_bwd from torch.distributed import ProcessGroup from internlm.core.context import global_context as gpc from internlm.utils.logger import get_logger logger = get_logger(__file__) def _split(input_, parallel_mode, dim=-1): # skip if only one rank involved world_size = gpc.get_world_size(parallel_mode) if world_size == 1: return input_ # Split along last dimension. dim_size = input_.size(dim) assert dim_size % world_size == 0, ( f"The dimension to split ({dim_size}) is not a multiple of world size ({world_size}), " f"cannot split tensor evenly" ) tensor_list = torch.split(input_, dim_size // world_size, dim=dim) rank = gpc.get_local_rank(parallel_mode) output = tensor_list[rank].contiguous() return output def _gather(input_, parallel_mode, dim=-1): # skip if only one rank involved world_size = gpc.get_world_size(parallel_mode) if world_size == 1: return input_ # all gather rank = gpc.get_local_rank(parallel_mode) tensor_list = [torch.empty_like(input_) for _ in range(world_size)] tensor_list[rank] = input_ group = gpc.get_cpu_group(parallel_mode) if input_.device.type == "cpu" else gpc.get_group(parallel_mode) torch.distributed.all_gather(tensor_list, input_, group=group) # concat output = torch.cat(tensor_list, dim=dim).contiguous() return output class _GatherForwardSplitBackward(torch.autograd.Function): """Gather the input from model parallel region and concatenate. Args: input_: input matrix. parallel_mode: parallel mode. dim: dimension """ @staticmethod def symbolic(input_): return _gather(input_, parallel_mode=None) @staticmethod def forward(ctx, input_, parallel_mode, dim): ctx.mode = parallel_mode ctx.dim = dim return _gather(input_, parallel_mode, dim) @staticmethod def backward(ctx, grad_output): return _split(grad_output, ctx.mode, ctx.dim), None, None def gather_forward_split_backward(input_, parallel_mode, dim): return _GatherForwardSplitBackward.apply(input_, parallel_mode, dim) def linear_bias_wgrad_torch(input, grad_output, has_d_bias): assert input.dtype == grad_output.dtype grad_weight = torch.matmul(grad_output.t(), input) grad_bias = grad_output.sum(dim=0) if has_d_bias else None return grad_weight, grad_bias # adpated from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/ops/fused_dense.py class FusedDenseFuncTorch(FusedDenseFunc): @staticmethod @custom_bwd def backward(ctx, grad_output, *args): grad_output = grad_output.contiguous() if ctx.return_residual: (grad_input,) = args grad_input = grad_input.contiguous() process_group = ctx.process_group sequence_parallel = ctx.sequence_parallel if ctx.compute_weight_gradient: x, weight = ctx.saved_tensors if process_group is not None and sequence_parallel: total_x, handle_x = all_gather_raw(x, process_group, async_op=True) else: total_x = x else: (weight,) = ctx.saved_tensors total_x = None batch_shape = grad_output.shape[:-1] batch_dim = batch_shape.numel() grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) if ctx.needs_input_grad[0]: if not ctx.return_residual: grad_input = F.linear(grad_output, weight.t()) else: grad_input = torch.addmm(grad_input.reshape(batch_dim, grad_input.shape[-1]), grad_output, weight) grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1]) if process_group is not None: reduce_fn = reduce_scatter_raw if sequence_parallel else all_reduce_raw grad_input, handle_grad_input = reduce_fn(grad_input, process_group, async_op=True) else: grad_input = None if ctx.needs_input_grad[1]: assert ctx.compute_weight_gradient if process_group is not None and sequence_parallel: handle_x.wait() # we remove the cuda independence, which is different from flash_attn. grad_weight, grad_bias = linear_bias_wgrad_torch( total_x.reshape(batch_dim, total_x.shape[-1]), grad_output, ctx.needs_input_grad[2] ) else: grad_weight = None grad_bias = grad_output if ctx.needs_input_grad[2] else None if process_group is not None and ctx.needs_input_grad[0]: handle_grad_input.wait() return grad_input, grad_weight, grad_bias, None, None, None def fused_dense_func_torch( x: Tensor, weight: Tensor, bias: Optional[Tensor] = None, return_residual: bool = False, process_group: Optional[ProcessGroup] = None, sequence_parallel: bool = True, ): dtype_eligible = x.dtype in [torch.float16, torch.bfloat16] or ( x.dtype == torch.float32 and torch.is_autocast_enabled() ) if x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and dtype_eligible: return FusedDenseFunc.apply(x, weight, bias, return_residual, process_group, sequence_parallel) else: return FusedDenseFuncTorch.apply(x, weight, bias, return_residual, process_group, sequence_parallel) class _SplitForwardGatherBackward(torch.autograd.Function): """ Split the input and keep only the corresponding chuck to the rank. Args: input_: input matrix. parallel_mode: parallel mode. dim: dimension """ @staticmethod def symbolic(graph, input_): return _split(input_) @staticmethod def forward(ctx, input_, parallel_mode, dim): ctx.mode = parallel_mode ctx.dim = dim return _split(input_, parallel_mode, dim) @staticmethod def backward(ctx, grad_output): return _gather(grad_output, ctx.mode, ctx.dim), None, None def split_forward_gather_backward(input_, parallel_mode, dim): return _SplitForwardGatherBackward.apply(input_, parallel_mode, dim) def try_import_RMSNorm(): """ Try import MixFusedRMSNorm from apex, if failed, return our RMSNorm """ try: from apex.normalization.fused_layer_norm import MixedFusedRMSNorm as RMSNorm return RMSNorm except ModuleNotFoundError: logger.warn("The torch implementation for MixFusedRMSNorm is slower than apex. Please note this!") from internlm.model.norm import RMSNormTorch as RMSNorm return RMSNorm