mirror of https://github.com/InternLM/InternLM
79 lines
4.0 KiB
Markdown
79 lines
4.0 KiB
Markdown
# 对话
|
||
|
||
[English](./README.md) | 简体中文
|
||
|
||
本文介绍采用 [Transformers](#import-from-transformers)、[ModelScope](#import-from-modelscope)、[Web demos](#dialogue)
|
||
对 InternLM2.5-Chat 进行推理。
|
||
|
||
你还可以进一步了解 InternLM2.5-Chat 采用的[对话格式](./chat_format_zh-CN.md),以及如何[用 LMDeploy 进行推理或部署服务](./lmdeploy_zh-CN.md),或者尝试用 [OpenAOE](./openaoe.md) 与多个模型对话。
|
||
|
||
## 通过 Transformers 加载
|
||
|
||
通过以下的代码从 Transformers 加载 InternLM 模型 (可修改模型名称替换不同的模型)
|
||
|
||
```python
|
||
import torch
|
||
from modelscope import snapshot_download, AutoTokenizer, AutoModelForCausalLM
|
||
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm3-8b-instruct')
|
||
tokenizer = AutoTokenizer.from_pretrained(model_dir,trust_remote_code=True)
|
||
# 设置`torch_dtype=torch.float16`来将模型精度指定为torch.float16,否则可能会因为您的硬件原因造成显存不足的问题。
|
||
model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, torch_dtype=torch.float16)
|
||
# (可选) 如果在低资源设备上,可以通过bitsandbytes加载4-bit或8-bit量化的模型,进一步节省GPU显存.
|
||
# 4-bit 量化的 InternLM3 8B 大约会消耗 8GB 显存.
|
||
# pip install -U bitsandbytes
|
||
# 8-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_8bit=True)
|
||
# 4-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_4bit=True)
|
||
messages = [
|
||
{"role": "system", "content": "You are an AI assistant whose name is InternLM."},
|
||
{"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
|
||
]
|
||
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
||
|
||
generated_ids = model.generate(tokenized_chat, max_new_tokens=512)
|
||
|
||
generated_ids = [
|
||
output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
|
||
]
|
||
response = tokenizer.batch_decode(generated_ids)[0]
|
||
```
|
||
|
||
### 通过 ModelScope 加载
|
||
|
||
通过以下的代码从 ModelScope 加载 InternLM2.5-Chat 模型 (可修改模型名称替换不同的模型)
|
||
|
||
```python
|
||
import torch
|
||
from modelscope import snapshot_download, AutoTokenizer, AutoModelForCausalLM
|
||
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm3-8b-instruct')
|
||
tokenizer = AutoTokenizer.from_pretrained(model_dir,trust_remote_code=True)
|
||
# 设置`torch_dtype=torch.float16`来将模型精度指定为torch.float16,否则可能会因为您的硬件原因造成显存不足的问题。
|
||
model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, torch_dtype=torch.float16)
|
||
# (可选) 如果在低资源设备上,可以通过bitsandbytes加载4-bit或8-bit量化的模型,进一步节省GPU显存.
|
||
# 4-bit 量化的 InternLM3 8B 大约会消耗 8GB 显存.
|
||
# pip install -U bitsandbytes
|
||
# 8-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_8bit=True)
|
||
# 4-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_4bit=True)
|
||
messages = [
|
||
{"role": "system", "content": "You are an AI assistant whose name is InternLM."},
|
||
{"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
|
||
]
|
||
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
||
|
||
generated_ids = model.generate(tokenized_chat, max_new_tokens=512)
|
||
|
||
generated_ids = [
|
||
output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
|
||
]
|
||
response = tokenizer.batch_decode(generated_ids)[0]
|
||
```
|
||
|
||
## 通过前端网页对话
|
||
|
||
可以通过以下代码启动一个前端的界面来与 InternLM3-8B-Instruct 模型进行交互
|
||
|
||
```bash
|
||
pip install streamlit
|
||
pip install transformers>=4.48
|
||
streamlit run ./web_demo.py
|
||
```
|