InternLM/internlm/train/utils.py

62 lines
2.2 KiB
Python

from typing import Dict, Tuple
import torch
def split_params_into_different_groups_for_optimizer(param_groups: Tuple[Dict]) -> Tuple[Dict]:
"""Split parameters into different groups for optimizer
Compatiable with muiltiple param groups, each should have a name
Args:
param_groups (Tuple[Dict]): The list of parameter groups to split
Input Example:
>>> (
>>> {'name': 'default', 'params': [tensor], 'weight_decay' :xxx},
>>> )
Returns:
Tuple[Dict]: list of params groups for optimizer
Output Example:
>>> (
>>> {'name': 'default','params': [tensor],'weight_decay' :xxx},
>>> {'name': 'default_fp32', 'params': [tensor],'weight_decay' :xxx},
>>> ...,
>>> )
Returns:
Tuple[Dict]: list of fp16/fp32 groups for optimizer
"""
if isinstance(param_groups, tuple):
param_groups = list(param_groups) # Tuple cannot be modified
elif isinstance(param_groups, dict):
param_groups = [param_groups]
elif not isinstance(param_groups, list):
raise ValueError(f"Unknown param group type of {type(param_groups)}")
fp32_group = {"name": "fp32", "params": []}
for pgroup in param_groups:
# copy attribute from origin group, we assume the input param_groups only
# have one group, so the attribute will not be copyed multiple times.
for ori_key in pgroup.keys():
if ori_key not in ("name", "params"):
fp32_group[ori_key] = pgroup[ori_key]
# Assign param
origin_params = []
for param in pgroup["params"]:
if param.dtype == torch.float32:
fp32_group["params"].append(param)
else:
origin_params.append(param)
# bf16 param group, the first group in the param_groups
pgroup["params"] = origin_params
param_groups.append(fp32_group)
return tuple(param_groups)
def create_param_groups(model, weight_decay):
parameters = {"params": list(model.parameters()), "name": "default", "weight_decay": weight_decay}
return split_params_into_different_groups_for_optimizer(parameters)