from typing import Dict, Tuple import torch def split_params_into_different_groups_for_optimizer(param_groups: Tuple[Dict]) -> Tuple[Dict]: """Split parameters into different groups for optimizer Compatiable with muiltiple param groups, each should have a name Args: param_groups (Tuple[Dict]): The list of parameter groups to split Input Example: >>> ( >>> {'name': 'default', 'params': [tensor], 'weight_decay' :xxx}, >>> ) Returns: Tuple[Dict]: list of params groups for optimizer Output Example: >>> ( >>> {'name': 'default','params': [tensor],'weight_decay' :xxx}, >>> {'name': 'default_fp32', 'params': [tensor],'weight_decay' :xxx}, >>> ..., >>> ) Returns: Tuple[Dict]: list of fp16/fp32 groups for optimizer """ if isinstance(param_groups, tuple): param_groups = list(param_groups) # Tuple cannot be modified elif isinstance(param_groups, dict): param_groups = [param_groups] elif not isinstance(param_groups, list): raise ValueError(f"Unknown param group type of {type(param_groups)}") fp32_group = {"name": "fp32", "params": []} for pgroup in param_groups: # copy attribute from origin group, we assume the input param_groups only # have one group, so the attribute will not be copyed multiple times. for ori_key in pgroup.keys(): if ori_key not in ("name", "params"): fp32_group[ori_key] = pgroup[ori_key] # Assign param origin_params = [] for param in pgroup["params"]: if param.dtype == torch.float32: fp32_group["params"].append(param) else: origin_params.append(param) # bf16 param group, the first group in the param_groups pgroup["params"] = origin_params param_groups.append(fp32_group) return tuple(param_groups) def create_param_groups(model, weight_decay): parameters = {"params": list(model.parameters()), "name": "default", "weight_decay": weight_decay} return split_params_into_different_groups_for_optimizer(parameters)