mirror of https://github.com/InternLM/InternLM
74 lines
2.7 KiB
Python
74 lines
2.7 KiB
Python
from typing import Dict, Tuple
|
|
|
|
from internlm.core.context.parallel_context import global_context as gpc
|
|
from internlm.model.utils import is_gate_param, is_moe_param, is_norm_param
|
|
|
|
|
|
def split_params_into_different_groups_for_optimizer(param_groups: Tuple[Dict]) -> Tuple[Dict]:
|
|
"""Split parameters into different MoE groups for optimizer
|
|
Compatiable with muiltiple param groups, each should have a name
|
|
|
|
Args:
|
|
param_groups (Tuple[Dict]):
|
|
The list of parameter groups to split
|
|
|
|
Returns:
|
|
Tuple[Dict]:
|
|
list of MoE/non-MoE groups for optimizer
|
|
"""
|
|
if isinstance(param_groups, tuple):
|
|
param_groups = list(param_groups) # Tuple cannot be modified
|
|
elif isinstance(param_groups, dict):
|
|
param_groups = [param_groups]
|
|
elif not isinstance(param_groups, list):
|
|
raise ValueError(f"Unknown param group type of {type(param_groups)}")
|
|
|
|
new_groups = {}
|
|
for pgroup in param_groups:
|
|
new_groups[pgroup["name"]] = {}
|
|
|
|
# create new groups for gate and norm
|
|
for key in ["gate", "norm"]:
|
|
new_groups[pgroup["name"]][key] = {}
|
|
new_groups[pgroup["name"]][key]["name"] = key
|
|
new_groups[pgroup["name"]][key][key] = True
|
|
# create moe groups
|
|
for key in gpc.expert_parallel_group_names:
|
|
new_groups[pgroup["name"]][key] = {}
|
|
new_groups[pgroup["name"]][key]["name"] = key
|
|
new_groups[pgroup["name"]][key]["moe"] = True
|
|
|
|
# copy attribute from origin group
|
|
for ori_key in pgroup.keys():
|
|
for key in new_groups[pgroup["name"]].keys():
|
|
if ori_key != "name":
|
|
if ori_key == "params":
|
|
new_groups[pgroup["name"]][key][ori_key] = []
|
|
else:
|
|
new_groups[pgroup["name"]][key][ori_key] = pgroup[ori_key]
|
|
# Assign param
|
|
origin_params = []
|
|
for param in pgroup["params"]:
|
|
if is_moe_param(param):
|
|
new_groups[pgroup["name"]][param.group_name]["params"].append(param)
|
|
elif is_norm_param(param):
|
|
new_groups[pgroup["name"]]["norm"]["params"].append(param)
|
|
elif is_gate_param(param):
|
|
new_groups[pgroup["name"]]["gate"]["params"].append(param)
|
|
else:
|
|
origin_params.append(param)
|
|
|
|
pgroup["params"] = origin_params
|
|
|
|
for _, v in new_groups.items():
|
|
for _, v1 in v.items():
|
|
param_groups.append(v1)
|
|
|
|
return tuple(param_groups)
|
|
|
|
|
|
def create_param_groups(model, weight_decay):
|
|
parameters = {"params": list(model.parameters()), "name": "default", "weight_decay": weight_decay}
|
|
|
|
return split_params_into_different_groups_for_optimizer(parameters)
|