from typing import Dict, Tuple from internlm.core.context.parallel_context import global_context as gpc from internlm.model.utils import is_gate_param, is_moe_param, is_norm_param def split_params_into_different_groups_for_optimizer(param_groups: Tuple[Dict]) -> Tuple[Dict]: """Split parameters into different MoE groups for optimizer Compatiable with muiltiple param groups, each should have a name Args: param_groups (Tuple[Dict]): The list of parameter groups to split Returns: Tuple[Dict]: list of MoE/non-MoE groups for optimizer """ if isinstance(param_groups, tuple): param_groups = list(param_groups) # Tuple cannot be modified elif isinstance(param_groups, dict): param_groups = [param_groups] elif not isinstance(param_groups, list): raise ValueError(f"Unknown param group type of {type(param_groups)}") new_groups = {} for pgroup in param_groups: new_groups[pgroup["name"]] = {} # create new groups for gate and norm for key in ["gate", "norm"]: new_groups[pgroup["name"]][key] = {} new_groups[pgroup["name"]][key]["name"] = key new_groups[pgroup["name"]][key][key] = True # create moe groups for key in gpc.expert_parallel_group_names: new_groups[pgroup["name"]][key] = {} new_groups[pgroup["name"]][key]["name"] = key new_groups[pgroup["name"]][key]["moe"] = True # copy attribute from origin group for ori_key in pgroup.keys(): for key in new_groups[pgroup["name"]].keys(): if ori_key != "name": if ori_key == "params": new_groups[pgroup["name"]][key][ori_key] = [] else: new_groups[pgroup["name"]][key][ori_key] = pgroup[ori_key] # Assign param origin_params = [] for param in pgroup["params"]: if is_moe_param(param): new_groups[pgroup["name"]][param.group_name]["params"].append(param) elif is_norm_param(param): new_groups[pgroup["name"]]["norm"]["params"].append(param) elif is_gate_param(param): new_groups[pgroup["name"]]["gate"]["params"].append(param) else: origin_params.append(param) pgroup["params"] = origin_params for _, v in new_groups.items(): for _, v1 in v.items(): param_groups.append(v1) return tuple(param_groups) def create_param_groups(model, weight_decay): parameters = {"params": list(model.parameters()), "name": "default", "weight_decay": weight_decay} return split_params_into_different_groups_for_optimizer(parameters)