InternLM/internlm/model/linear.py

420 lines
16 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from typing import Optional
import torch
from flash_attn.ops.fused_dense import ColumnParallelLinear, RowParallelLinear
from flash_attn.utils.distributed import all_reduce, reduce_scatter, all_gather_raw, reduce_scatter_raw
from torch import Tensor
from torch import nn
from torch.cuda.amp import custom_bwd, custom_fwd
from internlm.core.context import ParallelMode
from internlm.core.context import global_context as gpc
from internlm.model.utils import Silu, fused_dense_func_torch
from typing import Optional
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.distributed import ProcessGroup
from torch.cuda.amp import custom_bwd, custom_fwd
# import fused_dense_cuda # from apex
import fused_dense_lib as fused_dense_cuda
from flash_attn.ops.activations import gelu_bwd, relu_bwd, sqrelu_fwd, sqrelu_bwd
from flash_attn.utils.distributed import all_gather_raw, reduce_scatter_raw, all_reduce_raw
from flash_attn.utils.distributed import reduce_scatter, all_reduce
class ScaleColumnParallelLinear(nn.Linear):
"""
ScaleColumnParallelLinear.
Args:
in_features (int): size of each input sample
out_features (int): size of each output sample
process_group (Optional[torch.distributed.ProcessGroup]): The group of the current device for `parallel_mode`.
bias (bool): Whether the bias is needed for linears. True by default. But it is typically set to False
in the config.
sequence_parallel (bool): If sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
we do an all_gather of x before doing the matmul.
If not, then the input is already gathered.
device (Optional[Union[str, torch.device]]): The device will be used.
dtype (Optional[torch.dtype]): The type of data.
weight_scale (int): For training stability. 1 by default.
"""
def __init__(
self,
in_features: int,
out_features: int,
process_group: Optional[torch.distributed.ProcessGroup],
bias: bool = True,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
weight_scale: int = 1,
) -> None:
world_size = torch.distributed.get_world_size(process_group)
if out_features % world_size != 0:
raise ValueError(f"out_features ({out_features}) must be divisible by " f"world_size ({world_size})")
super().__init__(in_features, out_features // world_size, bias=bias, device=device, dtype=dtype)
self.process_group = process_group
self.weight_scale = weight_scale
def forward(self, input): # pylint: disable=W0622
# If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
# we do an all_gather of x before doing the matmul.
# If not, then the input is already gathered.
if self.weight_scale != 1:
weight = self.weight * self.weight_scale + (1 - self.weight_scale) * self.weight.detach()
else:
weight = self.weight
return fused_dense_func_torch(
input,
weight,
self.bias,
process_group=self.process_group,
sequence_parallel=gpc.config.parallel.sequence_parallel,
)
class RewardModelLinear(ScaleColumnParallelLinear):
"""
RewardModelLinear.
Args:
in_features (int): size of each input sample
out_features (int): size of each output sample
process_group (Optional[torch.distributed.ProcessGroup]): The group of the current device for `parallel_mode`.
bias (bool): Whether the bias is needed for linears. True by default. But it is typically set to False
in the config.
sequence_parallel (bool): If sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
we do an all_gather of x before doing the matmul.
If not, then the input is already gathered.
device (Optional[Union[str, torch.device]]): The device will be used.
dtype (Optional[torch.dtype]): The type of data.
weight_scale (int): For training stability. 1 by default.
"""
def __init__(
self,
in_features: int,
out_features: int,
process_group: Optional[torch.distributed.ProcessGroup],
bias: bool = True,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
weight_scale: int = 1,
) -> None:
super().__init__(in_features, out_features, process_group, bias, device, dtype, weight_scale)
torch.distributed.broadcast(self.weight, gpc.get_ranks_in_group(ParallelMode.TENSOR)[0], process_group)
if bias:
torch.distributed.broadcast(self.bias, gpc.get_ranks_in_group(ParallelMode.TENSOR)[0], process_group)
def forward(self, input): # pylint: disable=W0622
# If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
# we do an all_gather of x before doing the matmul.
# If not, then the input is already gathered.
if self.weight_scale != 1:
weight = self.weight * self.weight_scale + (1 - self.weight_scale) * self.weight.detach()
else:
weight = self.weight
return fused_dense_func_torch(
input,
weight,
self.bias,
process_group=self.process_group,
sequence_parallel=gpc.config.parallel.sequence_parallel,
)
class ColumnParallelLinearTorch(ColumnParallelLinear):
def forward(self, x):
# If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
# we do an all_gather of x before doing the matmul.
# If not, then the input is already gathered.
return fused_dense_func_torch(
x, self.weight, self.bias, process_group=self.process_group, sequence_parallel=self.sequence_parallel
)
class RowParallelLinearTorch(RowParallelLinear):
def forward(self, x):
"""
We're doing Tensor Parallel with sequence parallelism: we do the matmul and then
a reduce_scatter of the result.
"""
out = fused_dense_func_torch(x, self.weight, self.bias)
reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce
return reduce_fn(out, self.process_group)
class FeedForward(nn.Module):
"""
FeedForward.
Args:
in_features (int): size of each input sample
hidden_features (int): size of hidden state of FFN
out_features (int): size of each output sample
process_group (Optional[torch.distributed.ProcessGroup]): The group of the current device for `parallel_mode`.
bias (bool): Whether the bias is needed for linears. True by default. But it is typically set to False
in the config.
device (Optional[Union[str, torch.device]]): The device will be used.
dtype (Optional[torch.dtype]): The type of data.
multiple_of (int): For efficient training. Reset the size of hidden feature. 256 by default.
"""
def __init__(
self,
in_features: int,
hidden_features: int,
out_features: int = None,
process_group: Optional[torch.distributed.ProcessGroup] = None,
bias: bool = True,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
multiple_of: int = 256,
):
super().__init__()
hidden_features = multiple_of * ((hidden_features + multiple_of - 1) // multiple_of)
self.w1 = ColumnParallelLinearTorch(
in_features,
hidden_features,
process_group,
bias,
sequence_parallel=gpc.config.parallel.sequence_parallel,
device=device,
dtype=dtype,
)
self.w2 = ColumnParallelLinearTorch(
in_features,
hidden_features,
process_group,
bias,
sequence_parallel=gpc.config.parallel.sequence_parallel,
device=device,
dtype=dtype,
)
self.w3 = RowParallelLinearTorch(
hidden_features,
out_features,
process_group,
bias=bias,
sequence_parallel=gpc.config.parallel.sequence_parallel,
device=device,
dtype=dtype,
)
def forward(self, x):
w1_o = self.w1(x)
w2_o = self.w2(x)
out = self.w3(Silu(w1_o, w2_o))
return out
class FusedDenseFunc_fsdp(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, x, weight, bias, return_residual=False, process_group=None):
ctx.compute_weight_gradient = weight.requires_grad
ctx.return_residual = return_residual
ctx.process_group = process_group
if torch.is_autocast_enabled():
x = x.to(dtype=torch.get_autocast_gpu_dtype())
x = x.contiguous()
total_x = x
# do all_gather for weight and bias before actual computation
total_weight, handle_weight = all_gather_raw(weight, process_group, async_op=True)
if bias is not None:
total_bias, handle_bias = all_gather_raw(bias, process_group, async_op=True)
handle_bias.wait()
else:
total_bias = bias
if torch.is_autocast_enabled():
total_weight = total_weight.to(dtype=torch.get_autocast_gpu_dtype())
total_bias = total_bias.to(dtype=torch.get_autocast_gpu_dtype()) if bias is not None else None
handle_weight.wait()
total_weight = total_weight.contiguous()
batch_shape, n = total_x.shape[:-1], total_x.shape[-1]
batch_dim = batch_shape.numel()
# https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174
if min(batch_dim, n, *total_weight.shape) > 65535 * 32:
raise RuntimeError('fused_dense only supports matrix dims <= 2M')
output = F.linear(total_x, total_weight, total_bias)
if ctx.compute_weight_gradient:
ctx.save_for_backward(x, weight)
else:
ctx.save_for_backward(weight)
return output if not return_residual else (output, x)
@staticmethod
@custom_bwd
def backward(ctx, grad_output, *args):
grad_output = grad_output.contiguous()
if ctx.return_residual:
grad_input, = args
grad_input = grad_input.contiguous()
process_group = ctx.process_group
if ctx.compute_weight_gradient:
x, weight = ctx.saved_tensors
total_x = x
else:
weight, = ctx.saved_tensors
total_x = None
batch_shape = grad_output.shape[:-1]
batch_dim = batch_shape.numel()
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
# do all-gather for weight before backward
weight, handle_weight = all_gather_raw(weight, process_group, async_op=True)
handle_weight.wait()
if ctx.needs_input_grad[0]:
if not ctx.return_residual:
grad_input = F.linear(grad_output, weight.t())
else:
grad_input = torch.addmm(grad_input.reshape(batch_dim, grad_input.shape[-1]),
grad_output, weight)
grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1])
# if process_group is not None:
# import pdb; pdb.set_trace()
# grad_input, handle_grad_input = reduce_scatter_raw(grad_input, process_group, async_op=True)
# grad_input, handle_grad_input = all_reduce_raw(grad_input, process_group, async_op=True)
else:
grad_input = None
# import pdb; pdb.set_trace()
if ctx.needs_input_grad[1]:
assert ctx.compute_weight_gradient
grad_weight, grad_bias = fused_dense_cuda.linear_bias_wgrad(
total_x.reshape(batch_dim, total_x.shape[-1]), grad_output, ctx.needs_input_grad[2]
)
grad_weight, handle_grad_weight = reduce_scatter_raw(grad_weight, process_group, async_op=True)
if grad_bias is not None:
grad_bias, handle_grad_bias = reduce_scatter_raw(grad_bias, process_group, async_op=True)
handle_grad_bias.wait()
handle_grad_weight.wait()
else:
grad_weight = None
grad_bias = grad_output if ctx.needs_input_grad[2] else None
# if process_group is not None and ctx.needs_input_grad[0]:
# handle_grad_input.wait()
# import pdb; pdb.set_trace()
return grad_input, grad_weight, grad_bias, None, None, None
def fsdp_fused_dense_func(x: Tensor, weight: Tensor, bias: Optional[Tensor] = None,
return_residual: bool = False, process_group = None):
dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16]
or (x.dtype == torch.float32 and torch.is_autocast_enabled()))
if x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and dtype_eligible:
return FusedDenseFunc_fsdp.apply(x, weight, bias, return_residual, process_group)
else:
assert process_group is None
out = F.linear(x, weight, bias)
return out if not return_residual else (out, x)
class FSDPLinear(ColumnParallelLinear):
def forward(self, x):
return fsdp_fused_dense_func(x, self.weight, self.bias, process_group=self.process_group)
class FSDPScaleLinear(ScaleColumnParallelLinear):
def forward(self, input): # pylint: disable=W0622
# If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
# we do an all_gather of x before doing the matmul.
# If not, then the input is already gathered.
if self.weight_scale != 1:
weight = self.weight * self.weight_scale + (1 - self.weight_scale) * self.weight.detach()
else:
weight = self.weight
return fsdp_fused_dense_func(
input,
weight,
self.bias,
process_group=self.process_group,
)
class FSDPFeedForward(nn.Module):
"""
FeedForward.
Args:
in_features (int): size of each input sample
hidden_features (int): size of hidden state of FFN
out_features (int): size of each output sample
process_group (Optional[torch.distributed.ProcessGroup]): The group of the current device for `parallel_mode`.
bias (bool): Whether the bias is needed for linears. True by default. But it is typically set to False
in the config.
device (Optional[Union[str, torch.device]]): The device will be used.
dtype (Optional[torch.dtype]): The type of data.
multiple_of (int): For efficient training. Reset the size of hidden feature. 256 by default.
"""
def __init__(
self,
in_features: int,
hidden_features: int,
out_features: int = None,
process_group: Optional[torch.distributed.ProcessGroup] = None,
bias: bool = True,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
multiple_of: int = 256,
):
super().__init__()
hidden_features = multiple_of * ((hidden_features + multiple_of - 1) // multiple_of)
self.w1 = FSDPLinear(
in_features,
hidden_features,
process_group,
bias,
sequence_parallel=gpc.config.parallel.sequence_parallel,
device=device,
dtype=dtype,
)
self.w2 = FSDPLinear(
in_features,
hidden_features,
process_group,
bias,
sequence_parallel=gpc.config.parallel.sequence_parallel,
device=device,
dtype=dtype,
)
self.w3 = FSDPLinear(
hidden_features,
out_features,
process_group,
bias=bias,
sequence_parallel=gpc.config.parallel.sequence_parallel,
device=device,
dtype=dtype,
)
def forward(self, x):
w1_o = self.w1(x)
w2_o = self.w2(x)
out = self.w3(Silu(w1_o, w2_o))
return out