#!/usr/bin/env python # -*- encoding: utf-8 -*- from typing import Optional import torch from flash_attn.ops.fused_dense import ColumnParallelLinear, RowParallelLinear from flash_attn.utils.distributed import all_reduce, reduce_scatter, all_gather_raw, reduce_scatter_raw from torch import Tensor from torch import nn from torch.cuda.amp import custom_bwd, custom_fwd from internlm.core.context import ParallelMode from internlm.core.context import global_context as gpc from internlm.model.utils import Silu, fused_dense_func_torch from typing import Optional from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from torch.distributed import ProcessGroup from torch.cuda.amp import custom_bwd, custom_fwd # import fused_dense_cuda # from apex import fused_dense_lib as fused_dense_cuda from flash_attn.ops.activations import gelu_bwd, relu_bwd, sqrelu_fwd, sqrelu_bwd from flash_attn.utils.distributed import all_gather_raw, reduce_scatter_raw, all_reduce_raw from flash_attn.utils.distributed import reduce_scatter, all_reduce class ScaleColumnParallelLinear(nn.Linear): """ ScaleColumnParallelLinear. Args: in_features (int): size of each input sample out_features (int): size of each output sample process_group (Optional[torch.distributed.ProcessGroup]): The group of the current device for `parallel_mode`. bias (bool): Whether the bias is needed for linears. True by default. But it is typically set to False in the config. sequence_parallel (bool): If sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism: we do an all_gather of x before doing the matmul. If not, then the input is already gathered. device (Optional[Union[str, torch.device]]): The device will be used. dtype (Optional[torch.dtype]): The type of data. weight_scale (int): For training stability. 1 by default. """ def __init__( self, in_features: int, out_features: int, process_group: Optional[torch.distributed.ProcessGroup], bias: bool = True, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, weight_scale: int = 1, ) -> None: world_size = torch.distributed.get_world_size(process_group) if out_features % world_size != 0: raise ValueError(f"out_features ({out_features}) must be divisible by " f"world_size ({world_size})") super().__init__(in_features, out_features // world_size, bias=bias, device=device, dtype=dtype) self.process_group = process_group self.weight_scale = weight_scale def forward(self, input): # pylint: disable=W0622 # If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism: # we do an all_gather of x before doing the matmul. # If not, then the input is already gathered. if self.weight_scale != 1: weight = self.weight * self.weight_scale + (1 - self.weight_scale) * self.weight.detach() else: weight = self.weight return fused_dense_func_torch( input, weight, self.bias, process_group=self.process_group, sequence_parallel=gpc.config.parallel.sequence_parallel, ) class RewardModelLinear(ScaleColumnParallelLinear): """ RewardModelLinear. Args: in_features (int): size of each input sample out_features (int): size of each output sample process_group (Optional[torch.distributed.ProcessGroup]): The group of the current device for `parallel_mode`. bias (bool): Whether the bias is needed for linears. True by default. But it is typically set to False in the config. sequence_parallel (bool): If sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism: we do an all_gather of x before doing the matmul. If not, then the input is already gathered. device (Optional[Union[str, torch.device]]): The device will be used. dtype (Optional[torch.dtype]): The type of data. weight_scale (int): For training stability. 1 by default. """ def __init__( self, in_features: int, out_features: int, process_group: Optional[torch.distributed.ProcessGroup], bias: bool = True, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, weight_scale: int = 1, ) -> None: super().__init__(in_features, out_features, process_group, bias, device, dtype, weight_scale) torch.distributed.broadcast(self.weight, gpc.get_ranks_in_group(ParallelMode.TENSOR)[0], process_group) if bias: torch.distributed.broadcast(self.bias, gpc.get_ranks_in_group(ParallelMode.TENSOR)[0], process_group) def forward(self, input): # pylint: disable=W0622 # If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism: # we do an all_gather of x before doing the matmul. # If not, then the input is already gathered. if self.weight_scale != 1: weight = self.weight * self.weight_scale + (1 - self.weight_scale) * self.weight.detach() else: weight = self.weight return fused_dense_func_torch( input, weight, self.bias, process_group=self.process_group, sequence_parallel=gpc.config.parallel.sequence_parallel, ) class ColumnParallelLinearTorch(ColumnParallelLinear): def forward(self, x): # If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism: # we do an all_gather of x before doing the matmul. # If not, then the input is already gathered. return fused_dense_func_torch( x, self.weight, self.bias, process_group=self.process_group, sequence_parallel=self.sequence_parallel ) class RowParallelLinearTorch(RowParallelLinear): def forward(self, x): """ We're doing Tensor Parallel with sequence parallelism: we do the matmul and then a reduce_scatter of the result. """ out = fused_dense_func_torch(x, self.weight, self.bias) reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce return reduce_fn(out, self.process_group) class FeedForward(nn.Module): """ FeedForward. Args: in_features (int): size of each input sample hidden_features (int): size of hidden state of FFN out_features (int): size of each output sample process_group (Optional[torch.distributed.ProcessGroup]): The group of the current device for `parallel_mode`. bias (bool): Whether the bias is needed for linears. True by default. But it is typically set to False in the config. device (Optional[Union[str, torch.device]]): The device will be used. dtype (Optional[torch.dtype]): The type of data. multiple_of (int): For efficient training. Reset the size of hidden feature. 256 by default. """ def __init__( self, in_features: int, hidden_features: int, out_features: int = None, process_group: Optional[torch.distributed.ProcessGroup] = None, bias: bool = True, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, multiple_of: int = 256, ): super().__init__() hidden_features = multiple_of * ((hidden_features + multiple_of - 1) // multiple_of) self.w1 = ColumnParallelLinearTorch( in_features, hidden_features, process_group, bias, sequence_parallel=gpc.config.parallel.sequence_parallel, device=device, dtype=dtype, ) self.w2 = ColumnParallelLinearTorch( in_features, hidden_features, process_group, bias, sequence_parallel=gpc.config.parallel.sequence_parallel, device=device, dtype=dtype, ) self.w3 = RowParallelLinearTorch( hidden_features, out_features, process_group, bias=bias, sequence_parallel=gpc.config.parallel.sequence_parallel, device=device, dtype=dtype, ) def forward(self, x): w1_o = self.w1(x) w2_o = self.w2(x) out = self.w3(Silu(w1_o, w2_o)) return out class FusedDenseFunc_fsdp(torch.autograd.Function): @staticmethod @custom_fwd def forward(ctx, x, weight, bias, return_residual=False, process_group=None): ctx.compute_weight_gradient = weight.requires_grad ctx.return_residual = return_residual ctx.process_group = process_group if torch.is_autocast_enabled(): x = x.to(dtype=torch.get_autocast_gpu_dtype()) x = x.contiguous() total_x = x # do all_gather for weight and bias before actual computation total_weight, handle_weight = all_gather_raw(weight, process_group, async_op=True) if bias is not None: total_bias, handle_bias = all_gather_raw(bias, process_group, async_op=True) handle_bias.wait() else: total_bias = bias if torch.is_autocast_enabled(): total_weight = total_weight.to(dtype=torch.get_autocast_gpu_dtype()) total_bias = total_bias.to(dtype=torch.get_autocast_gpu_dtype()) if bias is not None else None handle_weight.wait() total_weight = total_weight.contiguous() batch_shape, n = total_x.shape[:-1], total_x.shape[-1] batch_dim = batch_shape.numel() # https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174 if min(batch_dim, n, *total_weight.shape) > 65535 * 32: raise RuntimeError('fused_dense only supports matrix dims <= 2M') output = F.linear(total_x, total_weight, total_bias) if ctx.compute_weight_gradient: ctx.save_for_backward(x, weight) else: ctx.save_for_backward(weight) return output if not return_residual else (output, x) @staticmethod @custom_bwd def backward(ctx, grad_output, *args): grad_output = grad_output.contiguous() if ctx.return_residual: grad_input, = args grad_input = grad_input.contiguous() process_group = ctx.process_group if ctx.compute_weight_gradient: x, weight = ctx.saved_tensors total_x = x else: weight, = ctx.saved_tensors total_x = None batch_shape = grad_output.shape[:-1] batch_dim = batch_shape.numel() grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) # do all-gather for weight before backward weight, handle_weight = all_gather_raw(weight, process_group, async_op=True) handle_weight.wait() if ctx.needs_input_grad[0]: if not ctx.return_residual: grad_input = F.linear(grad_output, weight.t()) else: grad_input = torch.addmm(grad_input.reshape(batch_dim, grad_input.shape[-1]), grad_output, weight) grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1]) # if process_group is not None: # import pdb; pdb.set_trace() # grad_input, handle_grad_input = reduce_scatter_raw(grad_input, process_group, async_op=True) # grad_input, handle_grad_input = all_reduce_raw(grad_input, process_group, async_op=True) else: grad_input = None # import pdb; pdb.set_trace() if ctx.needs_input_grad[1]: assert ctx.compute_weight_gradient grad_weight, grad_bias = fused_dense_cuda.linear_bias_wgrad( total_x.reshape(batch_dim, total_x.shape[-1]), grad_output, ctx.needs_input_grad[2] ) grad_weight, handle_grad_weight = reduce_scatter_raw(grad_weight, process_group, async_op=True) if grad_bias is not None: grad_bias, handle_grad_bias = reduce_scatter_raw(grad_bias, process_group, async_op=True) handle_grad_bias.wait() handle_grad_weight.wait() else: grad_weight = None grad_bias = grad_output if ctx.needs_input_grad[2] else None # if process_group is not None and ctx.needs_input_grad[0]: # handle_grad_input.wait() # import pdb; pdb.set_trace() return grad_input, grad_weight, grad_bias, None, None, None def fsdp_fused_dense_func(x: Tensor, weight: Tensor, bias: Optional[Tensor] = None, return_residual: bool = False, process_group = None): dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16] or (x.dtype == torch.float32 and torch.is_autocast_enabled())) if x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and dtype_eligible: return FusedDenseFunc_fsdp.apply(x, weight, bias, return_residual, process_group) else: assert process_group is None out = F.linear(x, weight, bias) return out if not return_residual else (out, x) class FSDPLinear(ColumnParallelLinear): def forward(self, x): return fsdp_fused_dense_func(x, self.weight, self.bias, process_group=self.process_group) class FSDPScaleLinear(ScaleColumnParallelLinear): def forward(self, input): # pylint: disable=W0622 # If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism: # we do an all_gather of x before doing the matmul. # If not, then the input is already gathered. if self.weight_scale != 1: weight = self.weight * self.weight_scale + (1 - self.weight_scale) * self.weight.detach() else: weight = self.weight return fsdp_fused_dense_func( input, weight, self.bias, process_group=self.process_group, ) class FSDPFeedForward(nn.Module): """ FeedForward. Args: in_features (int): size of each input sample hidden_features (int): size of hidden state of FFN out_features (int): size of each output sample process_group (Optional[torch.distributed.ProcessGroup]): The group of the current device for `parallel_mode`. bias (bool): Whether the bias is needed for linears. True by default. But it is typically set to False in the config. device (Optional[Union[str, torch.device]]): The device will be used. dtype (Optional[torch.dtype]): The type of data. multiple_of (int): For efficient training. Reset the size of hidden feature. 256 by default. """ def __init__( self, in_features: int, hidden_features: int, out_features: int = None, process_group: Optional[torch.distributed.ProcessGroup] = None, bias: bool = True, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, multiple_of: int = 256, ): super().__init__() hidden_features = multiple_of * ((hidden_features + multiple_of - 1) // multiple_of) self.w1 = FSDPLinear( in_features, hidden_features, process_group, bias, sequence_parallel=gpc.config.parallel.sequence_parallel, device=device, dtype=dtype, ) self.w2 = FSDPLinear( in_features, hidden_features, process_group, bias, sequence_parallel=gpc.config.parallel.sequence_parallel, device=device, dtype=dtype, ) self.w3 = FSDPLinear( hidden_features, out_features, process_group, bias=bias, sequence_parallel=gpc.config.parallel.sequence_parallel, device=device, dtype=dtype, ) def forward(self, x): w1_o = self.w1(x) w2_o = self.w2(x) out = self.w3(Silu(w1_o, w2_o)) return out