InternLM/model_cards/internlm2.5_7b.md

6.8 KiB

InternLM2.5-7B Model Card

Introduction

InternLM2.5, the 2.5th generation InternLM, has open-sourced a 7 billion parameter base model and a chat model tailored for practical scenarios. For the convenience of users and researchers, we have open-sourced three versions of each scale of the model, which are:

  • InternLM2.5-7B: Further pretrain with general domain data and domain-enhanced corpus, obtaining state-of-the-art performance in evaluation with good language capability. InternLM2.5 models are recommended for consideration in most applications.
  • InternLM2.5-chat-7B: Further aligned on top of InternLM2.5 through supervised fine-tuning (SFT) and online RLHF. InternLM2.5-Chat exhibits better instruction following, chat experience, and function calling, which is recommended for downstream applications.
  • InternLM2.5-7B-Chat-1M: 1M-long-context version of InternLM2.5-7B-Chat. InternLM2.5-Chat-1M supports million-word extra-long contextual reasoning while maintaining the same performance as InternLM2.5-Chat.

The model has the following characteristics:

  • Outstanding reasoning capability: State-of-the-art performance on Math reasoning, surpassing models like Llama3 and Gemma2-9B.
  • 1M Context window: Nearly perfect at finding needles in the haystack with 1M-long context, with leading performance on long-context tasks like LongBench. Try it with LMDeploy for 1M-context inference. More details and a file chat demo are found here.
  • Stronger tool use: InternLM2.5 supports gathering information from more than 100 web pages, corresponding implementation will be released in Lagent soon. InternLM2.5 has better tool utilization-related capabilities in instruction following, tool selection and reflection. See examples.

Model Zoo

Model Transformers(HF) ModelScope(HF) OpenXLab(HF) OpenXLab(Origin) Release Date
InternLM2.5-7B 🤗internlm2_5-7b internlm2_5-7b Open in OpenXLab Open in OpenXLab 2024-07-03
InternLM2.5-Chat-7B 🤗internlm2_5-7b-chat internlm2_5-7b-chat Open in OpenXLab Open in OpenXLab 2024-07-03
InternLM2.5-7B-Chat-1M 🤗internlm2_5-7b-chat-1m internlm2_5-7b-chat-1m Open in OpenXLab Open in OpenXLab 2024-07-03
  • HF refers to the format used by HuggingFace in transformers, whereas Origin denotes the format adopted by the InternLM team in InternEvo.

Performance Evaluation

We have evaluated InternLM2.5 on several important benchmarks using the open-source evaluation tool OpenCompass. Some of the evaluation results are shown in the table below. You are welcome to visit the OpenCompass Leaderboard for more evaluation results.

Base Model

Benchmark InternLM2.5-7B LLaMA-3-8B Yi-1.5-9B
MMLU(5-shot) 71.6 66.4 71.6
CMMLU(5-shot) 79.1 51.0 74.1
BBH(3-shot) 70.1 59.7 71.1
MATH(4-shot) 34.0 16.4 31.9
GSM8K(4-shot) 74.8 54.3 74.5
GPQA(0-shot) 31.3 31.3 27.8

Chat Model

Benchmark InternLM2.5-7B-Chat Llama3-8B-Instruct Gemma2-9B-IT Yi-1.5-9B-Chat GLM-4-9B-Chat Qwen2-7B-Instruct
MMLU (5-shot) 72.8 68.4 70.9 71.0 71.4 70.8
CMMLU (5-shot) 78.0 53.3 60.3 74.5 74.5 80.9
BBH (3-shot CoT) 71.6 54.4 68.2* 69.6 69.6 65.0
MATH (0-shot CoT) 60.1 27.9 46.9 51.1 51.1 48.6
GSM8K (0-shot CoT) 86.0 72.9 88.9 80.1 85.3 82.9
GPQA (0-shot) 38.4 26.1 33.8 37.9 36.9 38.4
  • We use ppl for the MCQ evaluation on base model.
  • The evaluation results were obtained from OpenCompass , and evaluation configuration can be found in the configuration files provided by OpenCompass.
  • The evaluation data may have numerical differences due to the version iteration of OpenCompass, so please refer to the latest evaluation results of OpenCompass.
  • * means the result is copied from the original paper.