mirror of https://github.com/InternLM/InternLM
update
parent
a99d681d63
commit
e8a22a7b0d
|
@ -233,6 +233,87 @@ class TestReward:
|
|||
# >>> rank_res: [0, 1]
|
||||
assert rank_res[0] == 0 & rank_res[1] == 1
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'model_name',
|
||||
[
|
||||
'internlm/internlm-reward-1_8b', 'internlm/internlm-reward-7b',
|
||||
'internlm/internlm-reward-20b'
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
'usefast',
|
||||
[
|
||||
True,
|
||||
False,
|
||||
],
|
||||
)
|
||||
def test_demo_topn(self, model_name, usefast):
|
||||
# prepare the llm model and tokenizer
|
||||
llm = AutoModel.from_pretrained(
|
||||
'internlm/internlm2-chat-7b',
|
||||
device_map='cuda',
|
||||
torch_dtype=torch.float16,
|
||||
trust_remote_code=True,
|
||||
)
|
||||
llm_tokenizer = AutoTokenizer.from_pretrained(
|
||||
'internlm/internlm2-chat-7b', trust_remote_code=True)
|
||||
|
||||
# prepare the reward model and tokenizer
|
||||
reward = AutoModel.from_pretrained(
|
||||
model_name,
|
||||
device_map='cuda',
|
||||
torch_dtype=torch.float16,
|
||||
trust_remote_code=True,
|
||||
)
|
||||
reward_tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name, trust_remote_code=True)
|
||||
|
||||
# prepare the chat prompt
|
||||
prompt = 'Write an article about artificial intelligence revolution.'
|
||||
messages = [{
|
||||
'role': 'system',
|
||||
'content': 'You are a helpful assistant.'
|
||||
}, {
|
||||
'role': 'user',
|
||||
'content': prompt
|
||||
}]
|
||||
text = llm_tokenizer.apply_chat_template(messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True)
|
||||
model_inputs = llm_tokenizer([text], return_tensors='pt').to('cuda')
|
||||
|
||||
# generate best of N candidates
|
||||
num_candidates = 3 # N=3
|
||||
candidates = []
|
||||
|
||||
outputs = llm.generate(
|
||||
**model_inputs,
|
||||
max_new_tokens=512,
|
||||
num_return_sequences=num_candidates,
|
||||
pad_token_id=llm_tokenizer.eos_token_id,
|
||||
do_sample=True,
|
||||
top_k=50,
|
||||
top_p=0.95,
|
||||
temperature=0.8,
|
||||
)
|
||||
outputs = outputs[:, model_inputs['input_ids'].shape[1]:]
|
||||
for i in range(num_candidates):
|
||||
candidate = llm_tokenizer.decode(outputs[i],
|
||||
skip_special_tokens=True)
|
||||
candidates.append(messages + [{
|
||||
'role': 'assistant',
|
||||
'content': candidate
|
||||
}])
|
||||
|
||||
rank_indices = reward.rank(reward_tokenizer, candidates)
|
||||
sorted_candidates = sorted(zip(rank_indices, candidates),
|
||||
key=lambda x: x[0])
|
||||
|
||||
# print the best response
|
||||
best_response = sorted_candidates[0][1][-1]['content']
|
||||
print(best_response)
|
||||
assert len(sorted_candidates) == 3
|
||||
|
||||
|
||||
class TestMMModel:
|
||||
"""Test cases for base model."""
|
||||
|
|
Loading…
Reference in New Issue