pull/751/head
zhulin1 2024-07-01 11:57:44 +08:00
parent f36805270c
commit a99d681d63
1 changed files with 38 additions and 26 deletions

View File

@ -160,6 +160,7 @@ class TestMath:
assert_model(response)
assert '2' in response
class TestReward:
"""Test cases for base model."""
@ -181,46 +182,57 @@ class TestReward:
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True,
use_fast=usefast)
model = AutoModel.from_pretrained(model_name, device_map="cuda",
torch_dtype=torch.float16,
trust_remote_code=True,)
tokenizer = AutoTokenizer.from_pretrained(model_name,
model = AutoModel.from_pretrained(
model_name,
device_map='cuda',
torch_dtype=torch.float16,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
chat_1 = [
{"role": "user", "content": "Hello! What's your name?"},
{"role": "assistant", "content": "My name is InternLM2! A helpful AI assistant. What can I do for you?"}
]
chat_2 = [
{"role": "user", "content": "Hello! What's your name?"},
{"role": "assistant", "content": "I have no idea."}
]
chat_1 = [{
'role': 'user',
'content': "Hello! What's your name?"
}, {
'role':
'assistant',
'content':
'I am InternLM2! A helpful AI assistant. What can I do for you?'
}]
chat_2 = [{
'role': 'user',
'content': "Hello! What's your name?"
}, {
'role': 'assistant',
'content': 'I have no idea.'
}]
# get reward score for a single chat
score1 = model.get_score(tokenizer, chat_1)
score2 = model.get_score(tokenizer, chat_2)
print("score1: ", score1)
print("score2: ", score2)
assert score1 > 0.5 && score1 < 1 && score2 < 0
print('score1: ', score1)
print('score2: ', score2)
assert score1 > 0.5 & score1 < 1 & score2 < 0
# batch inference, get multiple scores at once
scores = model.get_scores(tokenizer, [chat_1, chat_2])
print("scores: ", scores)
assert scores[0] > 0.5 && scores[0] < 1 && scores[1] < 0
print('scores: ', scores)
assert scores[0] > 0.5 & scores[0] < 1 & scores[1] < 0
# compare whether chat_1 is better than chat_2
compare_res = model.compare(tokenizer, chat_1, chat_2)
print("compare_res: ", compare_res)
print('compare_res: ', compare_res)
assert compare_res
# >>> compare_res: True
# rank multiple chats, it will return the ranking index of each chat
# the chat with the highest score will have ranking index as 0
# the chat with the highest score will have ranking index as 0
rank_res = model.rank(tokenizer, [chat_1, chat_2])
print("rank_res: ", rank_res) # lower index means higher score
# >>> rank_res: [0, 1]
assert rank_res[0] == 0 && rank_res[1] == 1
)
print('rank_res: ', rank_res) # lower index means higher score
# >>> rank_res: [0, 1]
assert rank_res[0] == 0 & rank_res[1] == 1
class TestMMModel:
"""Test cases for base model."""