Update test_hf_model.py

pull/751/head
zhulinJulia24 2024-07-01 11:53:12 +08:00 committed by GitHub
parent 4077643ce1
commit f36805270c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 61 additions and 0 deletions

View File

@ -160,6 +160,67 @@ class TestMath:
assert_model(response)
assert '2' in response
class TestReward:
"""Test cases for base model."""
@pytest.mark.parametrize(
'model_name',
[
'internlm/internlm-reward-1_8b', 'internlm/internlm-reward-7b',
'internlm/internlm-reward-20b'
],
)
@pytest.mark.parametrize(
'usefast',
[
True,
False,
],
)
def test_demo_default(self, model_name, usefast):
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True,
use_fast=usefast)
model = AutoModel.from_pretrained(model_name, device_map="cuda",
torch_dtype=torch.float16,
trust_remote_code=True,)
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
chat_1 = [
{"role": "user", "content": "Hello! What's your name?"},
{"role": "assistant", "content": "My name is InternLM2! A helpful AI assistant. What can I do for you?"}
]
chat_2 = [
{"role": "user", "content": "Hello! What's your name?"},
{"role": "assistant", "content": "I have no idea."}
]
# get reward score for a single chat
score1 = model.get_score(tokenizer, chat_1)
score2 = model.get_score(tokenizer, chat_2)
print("score1: ", score1)
print("score2: ", score2)
assert score1 > 0.5 && score1 < 1 && score2 < 0
# batch inference, get multiple scores at once
scores = model.get_scores(tokenizer, [chat_1, chat_2])
print("scores: ", scores)
assert scores[0] > 0.5 && scores[0] < 1 && scores[1] < 0
# compare whether chat_1 is better than chat_2
compare_res = model.compare(tokenizer, chat_1, chat_2)
print("compare_res: ", compare_res)
assert compare_res
# >>> compare_res: True
# rank multiple chats, it will return the ranking index of each chat
# the chat with the highest score will have ranking index as 0
rank_res = model.rank(tokenizer, [chat_1, chat_2])
print("rank_res: ", rank_res) # lower index means higher score
# >>> rank_res: [0, 1]
assert rank_res[0] == 0 && rank_res[1] == 1
)
class TestMMModel:
"""Test cases for base model."""