mirror of https://github.com/InternLM/InternLM
feat(ckpt): add auto ckpt load and singal quit (#189)
Co-authored-by: wangguoteng.p <wangguoteng925@qq.com>pull/192/head
parent
29d27a6227
commit
a45a91bb84
|
@ -138,6 +138,12 @@ def args_sanity_check():
|
|||
if "async_upload_tmp_folder" not in gpc.config.ckpt:
|
||||
gpc.config.ckpt._add_item("async_upload_tmp_folder", "/dev/shm/internlm_tmp_ckpt/")
|
||||
|
||||
if "stop_file_path" not in gpc.config.ckpt:
|
||||
gpc.config._add_item("stop_file_path", None)
|
||||
|
||||
if "load_given_ckpt" not in gpc.config.ckpt:
|
||||
gpc.config._add_item("load_given_ckpt", False)
|
||||
|
||||
if "snapshot_ckpt_folder" not in gpc.config.ckpt:
|
||||
gpc.config.ckpt._add_item("snapshot_ckpt_folder", os.path.join(gpc.config.ckpt.save_ckpt_folder), "snapshot")
|
||||
|
||||
|
|
|
@ -2,7 +2,9 @@
|
|||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import copy
|
||||
import fcntl
|
||||
import os
|
||||
import socket
|
||||
import time
|
||||
from enum import Enum
|
||||
from typing import Dict
|
||||
|
@ -12,6 +14,7 @@ import torch
|
|||
from internlm.core.context import ParallelMode
|
||||
from internlm.core.context import global_context as gpc
|
||||
from internlm.core.trainer import TrainState
|
||||
from internlm.monitor import send_alert_message
|
||||
from internlm.solver.optimizer import HybridZeroOptimizer
|
||||
from internlm.utils.common import get_current_device
|
||||
from internlm.utils.logger import get_logger
|
||||
|
@ -25,8 +28,6 @@ from internlm.utils.storage_manager import (
|
|||
|
||||
logger = get_logger(__file__)
|
||||
|
||||
quit_signal_handler = None
|
||||
|
||||
|
||||
class CheckpointType(Enum):
|
||||
NORMAL_CHECKPOINT = 1
|
||||
|
@ -167,44 +168,6 @@ def save_optimizer_checkpoint(optim, state_path):
|
|||
llm_save(os.path.join(state_path, fp), states)
|
||||
|
||||
|
||||
def save_checkpoint(folder, model, optimizer, scheduler, train_state: TrainState, model_config: Dict = None):
|
||||
"""
|
||||
Save checkpoint to the given folder path.
|
||||
"""
|
||||
|
||||
start = time.time()
|
||||
torch.distributed.barrier()
|
||||
folder = os.path.join(folder, str(train_state.step_count))
|
||||
logger.info(
|
||||
f"Saving checkpoint to `{folder}` at batch count:{train_state.step_count} from rank:{gpc.get_global_rank()}..."
|
||||
)
|
||||
|
||||
timer("save-model").start()
|
||||
save_model_checkpoint(folder=folder, model=model)
|
||||
timer("save-model").stop()
|
||||
|
||||
timer("save-optimizer").start()
|
||||
save_optimizer_checkpoint(optim=optimizer, state_path=folder)
|
||||
timer("save-optimizer").stop()
|
||||
|
||||
if gpc.is_rank_for_log():
|
||||
scheduler_states = scheduler.state_dict()
|
||||
llm_save(os.path.join(folder, "schedulder.pt"), saved_obj=scheduler_states)
|
||||
|
||||
sampler_state = train_state.batch_sampler.state_dict()
|
||||
llm_save(os.path.join(folder, "sampler.pt"), saved_obj=sampler_state)
|
||||
llm_save(os.path.join(folder, "context.pt"), saved_obj=train_state.state_dict())
|
||||
|
||||
if model_config is not None:
|
||||
llm_save(os.path.join(folder, "model_config.pt"), saved_obj=model_config)
|
||||
|
||||
torch.distributed.barrier()
|
||||
|
||||
if gpc.is_rank_for_log():
|
||||
timer.log(["save-model", "save-optimizer"], logger=logger)
|
||||
logger.info(f"Step: {train_state.step_count}, rank 0 save ckpt use {time.time() - start:.3f} s")
|
||||
|
||||
|
||||
def load_optimizer_checkpoint(folder, optim):
|
||||
"""Load the optimizer state from the local file system or remote
|
||||
object storage Service (OSS).
|
||||
|
@ -304,19 +267,12 @@ def load_scheduler(ckpt_path: str, lr_scheduler, optimizer, learning_rate, train
|
|||
logger.info(f"reload load_scheduler:{lr_scheduler}")
|
||||
|
||||
|
||||
class CheckpointSaveManager:
|
||||
class CheckpointManager:
|
||||
"""StorageManagerContext"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ckpt_config,
|
||||
model,
|
||||
optimizer,
|
||||
lr_scheduler,
|
||||
model_config,
|
||||
) -> None:
|
||||
def __init__(self, ckpt_config, model, model_config, feishu_address=None) -> None:
|
||||
"""
|
||||
CheckpointSaveManager is used to decide when to store ckpt. If it is an asynchronous
|
||||
CheckpointManager is used to decide when to store ckpt. If it is an asynchronous
|
||||
upload mode, you must call wait_async_upload_finish at the end of the program to wait
|
||||
for the asynchronous ckpt upload to complete.
|
||||
|
||||
|
@ -332,26 +288,85 @@ class CheckpointSaveManager:
|
|||
self.save_ckpt_folder = ckpt_config.save_ckpt_folder
|
||||
self.snapshot_ckpt_folder = ckpt_config.snapshot_ckpt_folder
|
||||
self.oss_snapshot_freq: int = ckpt_config.oss_snapshot_freq
|
||||
self.stop_file_path = ckpt_config.stop_file_path
|
||||
self.load_model_only_folder = ckpt_config.load_model_only_folder
|
||||
self.feishu_address = feishu_address
|
||||
self.storage_manager = get_storage_manager()
|
||||
self.snapshot_counter = 0
|
||||
self.load_optimizer = gpc.config.ckpt.load_optimizer
|
||||
|
||||
self.model = model
|
||||
self.optimizer = optimizer
|
||||
self.lr_scheduler = lr_scheduler
|
||||
self.model_config = model_config
|
||||
|
||||
if self.stop_file_path and gpc.get_global_rank() == 0:
|
||||
dir_path = os.path.dirname(self.stop_file_path)
|
||||
if dir_path != "" and not os.path.exists(dir_path):
|
||||
os.makedirs(dir_path)
|
||||
with open(self.stop_file_path, "w", encoding="utf-8") as f:
|
||||
f.write("0")
|
||||
|
||||
if not ckpt_config.load_given_ckpt:
|
||||
latest_ckpt_path = self.query_lastest_ckpt()
|
||||
self.load_ckpt_folder = latest_ckpt_path if latest_ckpt_path is not None else ckpt_config.load_ckpt_folder
|
||||
else:
|
||||
self.load_ckpt_folder = ckpt_config.load_ckpt_folder
|
||||
|
||||
def quit_signal_handler(self, train_state) -> bool:
|
||||
"""
|
||||
Exit signal detection function, if we write the exit step in the 'QUIT_FILE_PATH' file,
|
||||
all ranks will save ckpt and exit.
|
||||
Negative integer step means save ckpt.
|
||||
Positive integer step means save ckpt and quit.
|
||||
|
||||
Args:
|
||||
train_state (TrainState):
|
||||
Returns:
|
||||
bool: whether to quit.
|
||||
"""
|
||||
if self.stop_file_path is None:
|
||||
logger.warning("no set stop_file_path")
|
||||
return
|
||||
|
||||
now_break, now_save_ckpt, save_type = False, False, CheckpointType.NORMAL_CHECKPOINT
|
||||
with open(self.stop_file_path, "a+", encoding="utf-8") as f:
|
||||
fcntl.flock(f, fcntl.LOCK_EX)
|
||||
f.seek(0)
|
||||
msg = f.read()
|
||||
fcntl.flock(f, fcntl.LOCK_UN)
|
||||
action_step = int(msg)
|
||||
|
||||
if action_step < 0 and abs(action_step) == train_state.step_count:
|
||||
now_save_ckpt = True
|
||||
|
||||
if action_step > 0 and action_step == train_state.step_count:
|
||||
now_break, now_save_ckpt = True, True
|
||||
|
||||
if action_step != 0 and gpc.is_rank_for_log():
|
||||
msg = "Stop" if action_step > 0 else "Save"
|
||||
action_step = abs(action_step)
|
||||
if train_state.step_count <= action_step:
|
||||
if self.feishu_address:
|
||||
send_alert_message(
|
||||
address=self.feishu_address,
|
||||
message=f"training will {msg} at step_count {action_step}!\
|
||||
now step_count is {train_state.step_count}",
|
||||
)
|
||||
|
||||
return now_break, now_save_ckpt, save_type
|
||||
|
||||
def try_save_checkpoint(self, train_state):
|
||||
if not self.enable_save_ckpt:
|
||||
return
|
||||
return False
|
||||
|
||||
save_ckpts, save_type = False, CheckpointType.NORMAL_CHECKPOINT
|
||||
if self.oss_snapshot_freq > 1 and train_state.step_count % self.oss_snapshot_freq == 0:
|
||||
save_ckpts, save_type = True, CheckpointType.SNAPSHOT_CHECKPOINT
|
||||
if train_state.step_count % self.checkpoint_every == 0:
|
||||
save_ckpts, save_type = True, CheckpointType.NORMAL_CHECKPOINT
|
||||
now_break, singal_save_ckpts, singal_save_type = self.quit_signal_handler(train_state)
|
||||
if save_ckpts is False:
|
||||
if quit_signal_handler is not None:
|
||||
save_ckpts, save_type = quit_signal_handler(train_state)
|
||||
save_ckpts = singal_save_ckpts
|
||||
save_type = singal_save_type
|
||||
|
||||
if save_ckpts:
|
||||
# Wait for the previous round of asynchronous upload storage to complete.
|
||||
|
@ -361,9 +376,9 @@ class CheckpointSaveManager:
|
|||
self.snapshot_counter = (self.snapshot_counter + 1) % 2
|
||||
save_ckpt_folder = os.path.join(self.snapshot_ckpt_folder, f"{self.snapshot_counter}")
|
||||
else:
|
||||
save_ckpt_folder = self.save_ckpt_folder
|
||||
save_ckpt_folder = os.path.join(self.save_ckpt_folder, str(train_state.step_count))
|
||||
|
||||
save_checkpoint(
|
||||
self.save_checkpoint(
|
||||
folder=save_ckpt_folder,
|
||||
model=self.model,
|
||||
optimizer=self.optimizer,
|
||||
|
@ -372,7 +387,199 @@ class CheckpointSaveManager:
|
|||
model_config=self.model_config,
|
||||
)
|
||||
|
||||
return now_break
|
||||
|
||||
def wait_async_upload_finish(self):
|
||||
"""wait for all checkpoint uploads to be completed"""
|
||||
self.storage_manager.wait()
|
||||
torch.distributed.barrier()
|
||||
|
||||
def query_latest_snapshot_step_boto3(self):
|
||||
"""query_latest_snapshot_step_boto3
|
||||
Returns:
|
||||
Tuple(str, int): path of latest ckpt and ckpt step, if not found, None will return.
|
||||
"""
|
||||
ckpt_list = self.storage_manager.get_fns(self.save_ckpt_folder)
|
||||
if len(ckpt_list) == 0:
|
||||
return None, None
|
||||
|
||||
max_normal_step = 0
|
||||
ckpt_list = list(map(lambda a: int(a.strip("/")) if a.strip("/").isdigit() else 0, ckpt_list))
|
||||
ckpt_list.sort(reverse=True)
|
||||
for ckpt in ckpt_list:
|
||||
fns_list = self.storage_manager.get_fns(os.path.join(self.save_ckpt_folder, str(ckpt)))
|
||||
for fn in fns_list:
|
||||
if fn.endswith(".step"):
|
||||
max_normal_step = ckpt
|
||||
break
|
||||
if max_normal_step != 0:
|
||||
break
|
||||
|
||||
max_normal_step = ckpt_list[0]
|
||||
load_normal_ckpt_path = os.path.join(self.save_ckpt_folder, str(max_normal_step))
|
||||
|
||||
snapshot_path_0 = os.path.join(self.save_ckpt_folder, "snapshot", "0")
|
||||
snapshot_path_1 = os.path.join(self.save_ckpt_folder, "snapshot", "1")
|
||||
ckpt_list_1 = self.storage_manager.get_fns(snapshot_path_0)
|
||||
ckpt_list_2 = self.storage_manager.get_fns(snapshot_path_1)
|
||||
max_step_0, max_step_1 = 0, 0
|
||||
for ckpt in ckpt_list_1:
|
||||
ckpt = ckpt.strip("/")
|
||||
if ckpt.endswith(".step"):
|
||||
max_step_0 = max(max_step_0, int(ckpt.split(".")[0]))
|
||||
for ckpt in ckpt_list_2:
|
||||
ckpt = ckpt.strip("/")
|
||||
if ckpt.endswith(".step"):
|
||||
max_step_1 = max(max_step_1, int(ckpt.split(".")[0]))
|
||||
|
||||
snap_load_path = snapshot_path_0 if max_step_0 > max_step_1 else snapshot_path_1
|
||||
snap_step = max(max_step_0, max_step_1)
|
||||
load_path = snap_load_path if snap_step > max_normal_step else load_normal_ckpt_path
|
||||
load_step = max(snap_step, max_normal_step)
|
||||
return load_path, load_step
|
||||
|
||||
def query_latest_snapshot_step_local(self):
|
||||
max_step, max_step_path = 0, None
|
||||
for root, _, files in os.walk(self.save_ckpt_folder, followlinks=True):
|
||||
for fn in files:
|
||||
fn = fn.strip("/")
|
||||
if fn.endswith(".step"):
|
||||
# We assume that both normal ckpt and snapshot ckpt will store the '.step' file
|
||||
# as an integrity flag.
|
||||
step = int(fn.rsplit(".", maxsplit=1)[0])
|
||||
if max_step < step:
|
||||
max_step = step
|
||||
max_step_path = root
|
||||
|
||||
return max_step_path, max_step
|
||||
|
||||
def query_lastest_ckpt(self):
|
||||
latest_checkpoint = None
|
||||
# Training was automatically restarted by the process, forcing the latest snapshot to be read.
|
||||
if self.save_ckpt_folder:
|
||||
if self.save_ckpt_folder.startswith("boto3"):
|
||||
latest_checkpoint, step = self.query_latest_snapshot_step_boto3()
|
||||
elif self.save_ckpt_folder.startswith("local"):
|
||||
latest_checkpoint, step = self.query_latest_snapshot_step_local()
|
||||
else:
|
||||
latest_checkpoint, step = None, 0
|
||||
|
||||
if latest_checkpoint is not None:
|
||||
if gpc.is_rank_for_log():
|
||||
logger.info(f"Found latest ckpt : {latest_checkpoint}, step: {step}")
|
||||
send_alert_message(
|
||||
address=self.feishu_address,
|
||||
message=f"Auto restart resume from ckpt-path: '{latest_checkpoint}', step : {step}",
|
||||
)
|
||||
else:
|
||||
if gpc.is_rank_for_log():
|
||||
send_alert_message(
|
||||
address=self.feishu_address,
|
||||
message=f"Can't find snapshot checkpoint, use default load-ckpt path: {latest_checkpoint}",
|
||||
)
|
||||
|
||||
return latest_checkpoint
|
||||
|
||||
def try_load_model(self, current_time=""):
|
||||
model_load_path = None
|
||||
|
||||
if self.load_ckpt_folder and self.load_model_only_folder:
|
||||
raise ValueError(
|
||||
"Error, try to use both load_ckpt_folder and load_model_only_folder paths, \
|
||||
if you only need to load model weights (for example starting an SFT task for the first time), \
|
||||
set load_model_only_folder path, if you need to resume training from ckpt, \
|
||||
set load_ckpt_folder or use default value \
|
||||
(if is the default value, internlm will try to load the latest ckpt from save_ckpt_folder)"
|
||||
)
|
||||
|
||||
if self.load_ckpt_folder:
|
||||
logger.info(
|
||||
f"===========Resume training from `{self.load_ckpt_folder}` {current_time} on host:"
|
||||
f"{socket.gethostname()}==========="
|
||||
)
|
||||
model_load_path = self.load_ckpt_folder
|
||||
elif self.load_model_only_folder:
|
||||
logger.info(
|
||||
f"===========SFT training from `{self.load_model_only_folder}` {current_time} on host:"
|
||||
f"{socket.gethostname()}==========="
|
||||
)
|
||||
model_load_path = self.load_model_only_folder
|
||||
else:
|
||||
logger.info(
|
||||
f"===========New Run {current_time} on host:{socket.gethostname()},rank={gpc.get_global_rank()},"
|
||||
f"tp={gpc.get_local_rank(ParallelMode.TENSOR)},pp={gpc.get_local_rank(ParallelMode.PIPELINE)},"
|
||||
f"dp={gpc.get_local_rank(ParallelMode.DATA)}==========="
|
||||
)
|
||||
|
||||
# Loading model weights must be done before zero is initialized.
|
||||
if model_load_path is not None:
|
||||
load_model_checkpoint(folder=model_load_path, model=self.model)
|
||||
|
||||
def try_resume_traing(self, lr_scheduler, optimizer, lr, train_state, train_dl):
|
||||
"""Attempt to restore the training state of the last ckpt.
|
||||
|
||||
Args:
|
||||
lr_scheduler (_LRScheduler): lr_scheduler object.
|
||||
optimizer (Optimizer): optimizer object.
|
||||
lr (float): learning rate.
|
||||
train_state (dict): traing states.
|
||||
train_dl (DataLoader): traning dataloader object
|
||||
"""
|
||||
if self.load_ckpt_folder is not None:
|
||||
# load lr scheduler states.
|
||||
load_scheduler(self.load_ckpt_folder, lr_scheduler, optimizer, lr, train_state)
|
||||
# load training states.
|
||||
load_context(self.load_ckpt_folder, train_dl, train_state)
|
||||
# load dataloader sampler states.
|
||||
load_sampler(self.load_ckpt_folder, train_dl.batch_sampler)
|
||||
# load optimzier states.
|
||||
if self.load_optimizer:
|
||||
load_optimizer_checkpoint(self.load_ckpt_folder, optimizer)
|
||||
|
||||
self.optimizer = optimizer
|
||||
self.lr_scheduler = lr_scheduler
|
||||
|
||||
def save_checkpoint(self, folder, model, optimizer, scheduler, train_state: TrainState, model_config: Dict = None):
|
||||
"""
|
||||
Save checkpoint to the given folder path.
|
||||
"""
|
||||
|
||||
start = time.time()
|
||||
self.set_save_folder(folder, train_state.step_count)
|
||||
torch.distributed.barrier()
|
||||
if gpc.is_rank_for_log():
|
||||
logger.info(f"Saving checkpoint to `{folder}` at batch count:{train_state.step_count}...")
|
||||
|
||||
timer("save-model").start()
|
||||
save_model_checkpoint(folder=folder, model=model)
|
||||
timer("save-model").stop()
|
||||
|
||||
timer("save-optimizer").start()
|
||||
save_optimizer_checkpoint(optim=optimizer, state_path=folder)
|
||||
timer("save-optimizer").stop()
|
||||
|
||||
if gpc.is_rank_for_log():
|
||||
scheduler_states = scheduler.state_dict()
|
||||
llm_save(os.path.join(folder, "schedulder.pt"), saved_obj=scheduler_states)
|
||||
|
||||
sampler_state = train_state.batch_sampler.state_dict()
|
||||
llm_save(os.path.join(folder, "sampler.pt"), saved_obj=sampler_state)
|
||||
llm_save(os.path.join(folder, "context.pt"), saved_obj=train_state.state_dict())
|
||||
|
||||
if model_config is not None:
|
||||
llm_save(os.path.join(folder, "model_config.pt"), saved_obj=model_config)
|
||||
|
||||
torch.distributed.barrier()
|
||||
|
||||
if gpc.is_rank_for_log():
|
||||
timer.log(["save-model", "save-optimizer"], logger=logger)
|
||||
logger.info(f"Step: {train_state.step_count}, rank 0 save ckpt use {time.time() - start:.3f} s")
|
||||
if self.storage_manager.async_mode is False:
|
||||
llm_save(
|
||||
os.path.join(folder, f"{train_state.step_count}.step"),
|
||||
saved_obj=dict({"step": train_state.step_count}),
|
||||
)
|
||||
|
||||
def set_save_folder(self, folder, step):
|
||||
self.storage_manager.latest_save_folder = folder
|
||||
self.storage_manager.latest_save_step = step
|
||||
|
|
|
@ -234,13 +234,13 @@ class Boto3Client(StorageClient):
|
|||
"""
|
||||
paginator = handler.client.get_paginator("list_objects_v2")
|
||||
pages = paginator.paginate(Bucket=bucket_name, Prefix=fp)
|
||||
|
||||
folder_name_list = []
|
||||
for page in pages:
|
||||
if "Contents" in page:
|
||||
for obj in page["Contents"]:
|
||||
fp: str = obj["Key"]
|
||||
folder_name_list.append(fp.rsplit("/", maxsplit=1)[1])
|
||||
return folder_name_list
|
||||
pth: str = obj["Key"]
|
||||
folder_name_list.append(pth.split(fp, maxsplit=1)[1].strip("/").split("/", maxsplit=1)[0])
|
||||
return list(set(folder_name_list))
|
||||
|
||||
@staticmethod
|
||||
def async_upload_fileobj(handler, bucket_name: str, fp: str, local_nvme_path: str):
|
||||
|
@ -391,6 +391,11 @@ class StorageManager(metaclass=SingletonMeta):
|
|||
self.tmp_local_folder = tmp_local_folde
|
||||
self.async_mode = async_mode
|
||||
self.has_warning = False
|
||||
self._async_loop = None
|
||||
self._thread_pool = None
|
||||
self.latest_save_folder = None
|
||||
self.latest_save_step = 0
|
||||
self.async_task_peeding = False
|
||||
|
||||
if enable_save and self.async_mode:
|
||||
self._async_loop = asyncio.new_event_loop()
|
||||
|
@ -485,6 +490,7 @@ class StorageManager(metaclass=SingletonMeta):
|
|||
torch.save(saved_obj, f, pickle_protocol=pickle.HIGHEST_PROTOCOL)
|
||||
self.async_executor(meta.async_upload_fn, *unpack_meta(meta))
|
||||
os.chmod(tmp_step_file, stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO)
|
||||
self.async_task_peeding = True
|
||||
else:
|
||||
meta.client.sync_upload_fileobj(*unpack_meta(meta), *args, saved_obj=saved_obj, **kwargs)
|
||||
self.upload_count += 1
|
||||
|
@ -560,6 +566,9 @@ class StorageManager(metaclass=SingletonMeta):
|
|||
if not self.async_mode:
|
||||
return
|
||||
|
||||
if not self.async_task_peeding:
|
||||
return
|
||||
|
||||
if self._async_loop:
|
||||
self._async_loop.run_until_complete(self._sync_tasks())
|
||||
|
||||
|
@ -578,10 +587,16 @@ class StorageManager(metaclass=SingletonMeta):
|
|||
self._del_tmp_folder()
|
||||
self._exception_list.clear()
|
||||
self._to_be_del_files.clear()
|
||||
self.async_task_peeding = False
|
||||
|
||||
if gpc.is_rank_for_log():
|
||||
logger.info("all async uploads succeeded!")
|
||||
self.upload_count += 1
|
||||
if self.async_mode:
|
||||
self.save(
|
||||
os.path.join(self.latest_save_folder, f"{self.latest_save_step}.step"),
|
||||
saved_obj=dict({"step": self.latest_save_step}),
|
||||
async_upload=False,
|
||||
)
|
||||
|
||||
|
||||
storage_manager: StorageManager = None
|
||||
|
|
74
train.py
74
train.py
|
@ -45,14 +45,7 @@ from internlm.utils.common import (
|
|||
from internlm.utils.evaluation import evaluate_on_val_dls, switch_sequence_parallel_mode
|
||||
from internlm.utils.logger import get_logger, initialize_uniscale_logger
|
||||
from internlm.utils.megatron_timers import megatron_timer as timer
|
||||
from internlm.utils.model_checkpoint import (
|
||||
CheckpointSaveManager,
|
||||
load_context,
|
||||
load_model_checkpoint,
|
||||
load_optimizer_checkpoint,
|
||||
load_sampler,
|
||||
load_scheduler,
|
||||
)
|
||||
from internlm.utils.model_checkpoint import CheckpointManager
|
||||
from internlm.utils.parallel import (
|
||||
get_parallel_log_file_name,
|
||||
is_no_pp_or_last_stage,
|
||||
|
@ -428,13 +421,9 @@ def main(args):
|
|||
skip_batches = gpc.config.data.skip_batches
|
||||
total_steps = gpc.config.data.total_steps
|
||||
valid_every = gpc.config.data.valid_every
|
||||
load_optimizer = gpc.config.ckpt.load_optimizer
|
||||
label_smoothing = gpc.config.loss.label_smoothing
|
||||
lr = gpc.config.adam.lr
|
||||
|
||||
load_model_only_folder = gpc.config.ckpt.get("load_model_only_folder", None)
|
||||
load_resume_ckpt_folder = gpc.config.ckpt.get("load_ckpt_folder", None)
|
||||
|
||||
get_tflops_func = partial(
|
||||
get_megatron_flops,
|
||||
checkpoint=gpc.config.model.checkpoint,
|
||||
|
@ -470,32 +459,19 @@ def main(args):
|
|||
enable_tb=gpc.config.enable_tb,
|
||||
)
|
||||
|
||||
model_load_path = None
|
||||
if load_resume_ckpt_folder is not None:
|
||||
logger.info(
|
||||
f"===========Resume training from `{load_resume_ckpt_folder}` {current_time} on host:"
|
||||
f"{socket.gethostname()}==========="
|
||||
)
|
||||
model_load_path = load_resume_ckpt_folder
|
||||
elif load_model_only_folder is not None:
|
||||
logger.info(
|
||||
f"===========SFT training from `{load_model_only_folder}` {current_time} on host:"
|
||||
f"{socket.gethostname()}==========="
|
||||
)
|
||||
model_load_path = load_model_only_folder
|
||||
else:
|
||||
logger.info(
|
||||
f"===========New Run {current_time} on host:{socket.gethostname()},rank={gpc.get_global_rank()},"
|
||||
f"tp={gpc.get_local_rank(ParallelMode.TENSOR)},pp={gpc.get_local_rank(ParallelMode.PIPELINE)},"
|
||||
f"dp={gpc.get_local_rank(ParallelMode.DATA)}==========="
|
||||
)
|
||||
|
||||
# initialize and resume train state
|
||||
train_state = TrainState(gpc.config)
|
||||
|
||||
# initialize model
|
||||
model = initialize_model()
|
||||
|
||||
ckpt_manager = CheckpointManager(
|
||||
ckpt_config=gpc.config.ckpt,
|
||||
model=model,
|
||||
model_config=gpc.config.model,
|
||||
feishu_address=gpc.config.alert_address,
|
||||
)
|
||||
|
||||
# initialize loss function
|
||||
criterion = FlashGPTLMLoss(parallel_output=True, label_smoothing=label_smoothing)
|
||||
|
||||
|
@ -505,30 +481,12 @@ def main(args):
|
|||
train_state.init_batch_sampler(train_dl)
|
||||
|
||||
# Loading model weights must be done before zero is initialized.
|
||||
if model_load_path is not None:
|
||||
load_model_checkpoint(folder=model_load_path, model=model)
|
||||
ckpt_manager.try_load_model(current_time)
|
||||
|
||||
optimizer, beta2_scheduler, lr_scheduler = initialize_optimizer(model=model)
|
||||
|
||||
# Loading other persistent training states.
|
||||
if load_resume_ckpt_folder is not None:
|
||||
# load lr scheduler states.
|
||||
load_scheduler(load_resume_ckpt_folder, lr_scheduler, optimizer, lr, train_state)
|
||||
# load training states.
|
||||
load_context(load_resume_ckpt_folder, train_dl, train_state)
|
||||
# load dataloader sampler states.
|
||||
load_sampler(load_resume_ckpt_folder, train_dl.batch_sampler)
|
||||
# load optimzier states.
|
||||
if load_optimizer:
|
||||
load_optimizer_checkpoint(load_resume_ckpt_folder, optimizer)
|
||||
|
||||
ckpt_save_manager = CheckpointSaveManager(
|
||||
ckpt_config=gpc.config.ckpt,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
lr_scheduler=lr_scheduler,
|
||||
model_config=gpc.config.model,
|
||||
)
|
||||
ckpt_manager.try_resume_traing(lr_scheduler, optimizer, lr, train_state, train_dl)
|
||||
|
||||
# initialize metric for calculating accuracy and perplexity
|
||||
metric = AccPerplex(
|
||||
|
@ -649,9 +607,11 @@ def main(args):
|
|||
|
||||
# checkpoint the training states in specific steps, which is determined by the args "checkpoint_every"
|
||||
# # save batch sampler that tracks the true consumed samples
|
||||
ckpt_save_manager.try_save_checkpoint(train_state)
|
||||
now_break = ckpt_manager.try_save_checkpoint(train_state)
|
||||
if now_break:
|
||||
break
|
||||
|
||||
ckpt_save_manager.wait_async_upload_finish()
|
||||
ckpt_manager.wait_async_upload_finish()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -667,8 +627,10 @@ if __name__ == "__main__":
|
|||
try:
|
||||
main(args)
|
||||
except Exception:
|
||||
format_trace = ""
|
||||
for line in traceback.format_exc().split("\n")[-10:]:
|
||||
format_trace += "\n" + line
|
||||
logger.error(
|
||||
f"Raise exception from {hostname} with rank id: {gpc.get_global_rank()}",
|
||||
exc_info=traceback.format_exc(),
|
||||
f"Raise exception from {hostname} with rank id: {gpc.get_global_rank()}, trace:{format_trace}",
|
||||
)
|
||||
mm.monitor_exception(alert_address=gpc.config.alert_address, excp_info=traceback.format_exc())
|
||||
|
|
Loading…
Reference in New Issue