InternLM/internlm/utils/model_checkpoint.py

586 lines
24 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import copy
import fcntl
import os
import socket
import time
from enum import Enum
from typing import Dict
import torch
from internlm.core.context import ParallelMode
from internlm.core.context import global_context as gpc
from internlm.core.trainer import TrainState
from internlm.monitor import send_alert_message
from internlm.solver.optimizer import HybridZeroOptimizer
from internlm.utils.common import get_current_device
from internlm.utils.logger import get_logger
from internlm.utils.megatron_timers import megatron_timer as timer
from internlm.utils.storage_manager import (
get_fns,
get_storage_manager,
llm_load,
llm_save,
)
logger = get_logger(__file__)
class CheckpointType(Enum):
NORMAL_CHECKPOINT = 1
SNAPSHOT_CHECKPOINT = 2
def get_model_topology(model):
"""
Returns:
{
'{name}': {'dim': int}
}
where name is the name of the module, and all parameters under this module are
concatenated along the dimension 'dim'.
"""
from flash_attn.modules.embedding import VocabParallelEmbedding
topos = {}
for name, module in model.named_modules():
# If it does not meet these conditions, it is shared between various tp/dp, and it is necessary to assert
# that they are consistent.
if isinstance(module, VocabParallelEmbedding):
topos[name] = {"dim": 0}
return topos
def save_model_checkpoint(folder, model):
"""
Save the model according to the relationship between tp and dp. The principle is that the data of each tp
will not be gathered and saved separately, which is equivalent to actual sharding. The saved weight is named
- folder
- model_tp{tp_rank}_pp{pp_rank}.pt
If the tp is inconsistent with the saved one in the future use, the weight needs to be converted before loading.
Args:
folder: The folder to save the model
model: The model to be saved
"""
states = model.state_dict()
topo = get_model_topology(model)
if folder is not None:
dp_size = gpc.get_world_size(ParallelMode.DATA)
tp_size = gpc.get_world_size(ParallelMode.TENSOR)
dp_rank = gpc.get_local_rank(ParallelMode.DATA)
tp_rank = gpc.get_local_rank(ParallelMode.TENSOR)
pp_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
# TODO In theory, we should also consider pp level, but since pp is generally a state across machines,
# even if pp is not considered, it will definitely not be written on the same machine.
should_save_rank_pair = set() # (tp_rank, dp_rank)
for i in range(tp_size):
should_save_rank_pair.add((i, i % dp_size))
if (tp_rank, dp_rank) in should_save_rank_pair:
fn = f"model_tp{tp_rank}_pp{pp_rank}.pt"
fp = os.path.join(folder, fn)
llm_save(fp, saved_obj=states)
topo_fn = f"topo_tp{tp_rank}_pp{pp_rank}.json"
topo_fp = os.path.join(folder, topo_fn)
llm_save(topo_fp, saved_obj=topo)
torch.distributed.barrier()
def load_model_checkpoint(folder, model):
"""
There should be weights with names similar to the following under the folder.
- folder
- model_tp{tp_rank}_pp{pp_rank}.pt
If the tp is inconsistent with the saved one in the future use, the weight needs to be converted before loading.
"""
tp_size = gpc.get_world_size(ParallelMode.TENSOR)
pp_size = gpc.get_world_size(ParallelMode.PIPELINE)
tp_rank = gpc.get_local_rank(ParallelMode.TENSOR)
pp_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
fns = get_fns(folder)
max_pp, max_tp = 0, 0
for fn in fns:
if fn.startswith("model_t") and not fn.endswith(".md5"):
segements = os.path.splitext(fn)[0].split("_")
max_pp = max(max_pp, int(segements[-1][2:]))
max_tp = max(max_tp, int(segements[-2][2:]))
assert (
pp_size == max_pp + 1
), f"The weights are save for {max_pp+1} pipelines, while current has {pp_size} pipelines"
assert (
tp_size == max_tp + 1
), f"The weights are save for {max_tp+1} parallelism, while current has {tp_size} tensor parallelism"
should_load_name = f"model_tp{tp_rank}_pp{pp_rank}.pt"
fp = os.path.join(folder, should_load_name)
states = llm_load(fp, map_location=get_current_device())
missing_k, unexpected_keys = model.load_state_dict(states, strict=False)
if len(missing_k) != 0:
logger.warning(f"Warning: missing keys {missing_k}")
if len(unexpected_keys) != 0:
logger.warning(f"Warning: unexpected keys {unexpected_keys}")
# avoid to cuda oom, Ref: https://discuss.pytorch.org/t/load-state-dict-causes-memory-leak/36189/11
del states
torch.cuda.empty_cache()
def save_optimizer_checkpoint(optim, state_path):
"""Store the state of the optimizer to the local file system or remote OSS.
Args:
optim (Optimizer)
state_path (str): The state loading path of optimizer.
"""
# TODO sanity check for optimizer type
zero_rank = gpc.get_local_rank(ParallelMode.ZERO1)
tp_rank = gpc.get_local_rank(ParallelMode.TENSOR)
pp_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
tp_size = gpc.get_world_size(ParallelMode.TENSOR)
pp_size = gpc.get_world_size(ParallelMode.PIPELINE)
fp = f"optimizer_tp{tp_rank}_pp{pp_rank}_zo{zero_rank}.pt"
states = optim.state_dict()
if isinstance(optim, HybridZeroOptimizer):
if gpc.get_global_rank() < optim.zero_world_size * tp_size * pp_size:
llm_save(os.path.join(state_path, fp), states)
if "zero_devide_optim_plan" in states:
params_per_rank_id_dict = states.pop("zero_devide_optim_plan")
fp_meta = os.path.join(state_path, optim.rank_unique_id)
llm_save(fp_meta, params_per_rank_id_dict)
else:
llm_save(os.path.join(state_path, fp), states)
def load_optimizer_checkpoint(folder, optim):
"""Load the optimizer state from the local file system or remote
object storage Service (OSS).
Args:
optim (Optimizer): optimizer
folder (str): The FS/OSS path where the optimizer will be stored.
"""
fns = get_fns(folder)
max_tp, max_pp, max_zero = 0, 0, 0
for fn in fns:
if fn.startswith("optimizer_") and not fn.endswith(".md5"):
_, tp, pp, zero = os.path.splitext(fn)[0].split("_")
max_zero = max(max_zero, int(zero[2:]))
max_tp = max(max_tp, int(tp[2:]))
max_pp = max(max_pp, int(pp[2:]))
zero_size = gpc.get_world_size(ParallelMode.ZERO1)
zero_rank = gpc.get_local_rank(ParallelMode.ZERO1)
tp_size = gpc.get_world_size(ParallelMode.TENSOR)
pp_size = gpc.get_world_size(ParallelMode.PIPELINE)
assert (
zero_size == max_zero + 1
), f"The weights are save for {max_zero+1} data parallel, while current has {zero_size} zero broadcast range."
assert (
pp_size == max_pp + 1
), f"The weights are save for {max_pp+1} pipelines, while current has {pp_size} pipelines"
assert (
tp_size == max_tp + 1
), f"The weights are save for {max_tp+1} parallelism, while current has {tp_size} tensor parallelism"
fp = f"optimizer_tp{gpc.get_local_rank(ParallelMode.TENSOR)}_"
fp += f"pp{gpc.get_local_rank(ParallelMode.PIPELINE)}_"
fp += f"zo{zero_rank}.pt"
states = llm_load(os.path.join(folder, fp), map_location=get_current_device())
if isinstance(optim, HybridZeroOptimizer):
fp_meta = os.path.join(folder, optim.rank_unique_id)
try:
zero_devide_optim_plan = llm_load(fp_meta)
states.update({"zero_devide_optim_plan": zero_devide_optim_plan})
except Exception as e:
logger.warning(
f"Read zero optimzer split file '{fp_meta}', for '{e}'"
f"Please check whether loading ckpts are saved with the HybridZeroOptimizer."
)
optim.load_state_dict(states)
del states
torch.cuda.empty_cache()
def load_sampler(ckpt_path: str, sampler):
sampler_states = llm_load(os.path.join(ckpt_path, "sampler.pt"))
sampler.load_state_dict(sampler_states)
if gpc.is_rank_for_log():
pstate = copy.deepcopy(sampler_states)
pstate.pop("indices")
pstate.pop("rng_state")
logger.info(f"reload sampler_states:{pstate}")
torch.cuda.empty_cache()
def load_context(ckpt_path: str, train_dl, train_state: TrainState):
context_stuffs = llm_load(os.path.join(ckpt_path, "context.pt"))
train_state.load_state_dict(context_stuffs, train_dl)
if gpc.is_rank_for_log():
logger.info(f"reload train_state:{train_state}")
torch.cuda.empty_cache()
def load_scheduler(ckpt_path: str, lr_scheduler, optimizer, learning_rate, train_state: TrainState):
scheduler_states = llm_load(os.path.join(ckpt_path, "schedulder.pt"))
if learning_rate != scheduler_states["base_lrs"][0] and gpc.is_rank_for_log():
logger.warning(
f"Using new learning rate {learning_rate} to replace old learn rate {scheduler_states['base_lrs'][0]}."
)
base_lrs = copy.deepcopy(scheduler_states["base_lrs"])
scheduler_states["base_lrs"] = [learning_rate] * len(scheduler_states["base_lrs"])
if "after_scheduler_dict" in scheduler_states:
scheduler_states["after_scheduler_dict"]["base_lrs"] = [learning_rate] * len(
scheduler_states["after_scheduler_dict"]["base_lrs"]
)
lr_scheduler.load_state_dict(scheduler_states)
lr_scheduler.last_epoch = train_state.step_count + 1
ratios = [learning_rate / lr for lr in base_lrs]
for idx, param_group in enumerate(optimizer.param_groups):
param_group["lr"] = param_group["lr"] * ratios[idx]
torch.cuda.empty_cache()
if gpc.is_rank_for_log():
logger.info(f"reload load_scheduler:{lr_scheduler}")
class CheckpointManager:
"""StorageManagerContext"""
def __init__(self, ckpt_config, model, model_config, feishu_address=None) -> None:
"""
CheckpointManager is used to decide when to store ckpt. If it is an asynchronous
upload mode, you must call wait_async_upload_finish at the end of the program to wait
for the asynchronous ckpt upload to complete.
Args:
ckpt_config (dict): model checkpoint config.
model (nn.module): model obj
optimizer (object): optimzier obj.
lr_scheduler (object): lr_scheduler obj.
model_config (dict): model config.
"""
self.enable_save_ckpt = ckpt_config.enable_save_ckpt
self.checkpoint_every = ckpt_config.checkpoint_every
self.save_ckpt_folder = ckpt_config.save_ckpt_folder
self.snapshot_ckpt_folder = ckpt_config.snapshot_ckpt_folder
self.oss_snapshot_freq: int = ckpt_config.oss_snapshot_freq
self.stop_file_path = ckpt_config.stop_file_path
self.load_model_only_folder = ckpt_config.load_model_only_folder
self.feishu_address = feishu_address
self.storage_manager = get_storage_manager()
self.snapshot_counter = 0
self.load_optimizer = gpc.config.ckpt.load_optimizer
self.model = model
self.model_config = model_config
if self.stop_file_path and gpc.get_global_rank() == 0:
dir_path = os.path.dirname(self.stop_file_path)
if dir_path != "" and not os.path.exists(dir_path):
os.makedirs(dir_path)
with open(self.stop_file_path, "w", encoding="utf-8") as f:
f.write("0")
if not ckpt_config.load_given_ckpt:
latest_ckpt_path = self.query_lastest_ckpt()
self.load_ckpt_folder = latest_ckpt_path if latest_ckpt_path is not None else ckpt_config.load_ckpt_folder
else:
self.load_ckpt_folder = ckpt_config.load_ckpt_folder
def quit_signal_handler(self, train_state) -> bool:
"""
Exit signal detection function, if we write the exit step in the 'QUIT_FILE_PATH' file,
all ranks will save ckpt and exit.
Negative integer step means save ckpt.
Positive integer step means save ckpt and quit.
Args:
train_state (TrainState):
Returns:
bool: whether to quit.
"""
if self.stop_file_path is None:
logger.warning("no set stop_file_path")
return
now_break, now_save_ckpt, save_type = False, False, CheckpointType.NORMAL_CHECKPOINT
with open(self.stop_file_path, "a+", encoding="utf-8") as f:
fcntl.flock(f, fcntl.LOCK_EX)
f.seek(0)
msg = f.read()
fcntl.flock(f, fcntl.LOCK_UN)
action_step = int(msg)
if action_step < 0 and abs(action_step) == train_state.step_count:
now_save_ckpt = True
if action_step > 0 and action_step == train_state.step_count:
now_break, now_save_ckpt = True, True
if action_step != 0 and gpc.is_rank_for_log():
msg = "Stop" if action_step > 0 else "Save"
action_step = abs(action_step)
if train_state.step_count <= action_step:
if self.feishu_address:
send_alert_message(
address=self.feishu_address,
message=f"training will {msg} at step_count {action_step}!\
now step_count is {train_state.step_count}",
)
return now_break, now_save_ckpt, save_type
def try_save_checkpoint(self, train_state):
if not self.enable_save_ckpt:
return False
save_ckpts, save_type = False, CheckpointType.NORMAL_CHECKPOINT
if self.oss_snapshot_freq > 1 and train_state.step_count % self.oss_snapshot_freq == 0:
save_ckpts, save_type = True, CheckpointType.SNAPSHOT_CHECKPOINT
if train_state.step_count % self.checkpoint_every == 0:
save_ckpts, save_type = True, CheckpointType.NORMAL_CHECKPOINT
now_break, singal_save_ckpts, singal_save_type = self.quit_signal_handler(train_state)
if save_ckpts is False:
save_ckpts = singal_save_ckpts
save_type = singal_save_type
if save_ckpts:
# Wait for the previous round of asynchronous upload storage to complete.
self.storage_manager.wait()
if save_type == CheckpointType.SNAPSHOT_CHECKPOINT:
# Snapshot number, with only two snapshots written alternately.
self.snapshot_counter = (self.snapshot_counter + 1) % 2
save_ckpt_folder = os.path.join(self.snapshot_ckpt_folder, f"{self.snapshot_counter}")
else:
save_ckpt_folder = os.path.join(self.save_ckpt_folder, str(train_state.step_count))
self.save_checkpoint(
folder=save_ckpt_folder,
model=self.model,
optimizer=self.optimizer,
scheduler=self.lr_scheduler,
train_state=train_state,
model_config=self.model_config,
)
return now_break
def wait_async_upload_finish(self):
"""wait for all checkpoint uploads to be completed"""
self.storage_manager.wait()
torch.distributed.barrier()
def query_latest_snapshot_step_boto3(self):
"""query_latest_snapshot_step_boto3
Returns:
Tuple(str, int): path of latest ckpt and ckpt step, if not found, None will return.
"""
ckpt_list = self.storage_manager.get_fns(self.save_ckpt_folder)
if len(ckpt_list) == 0:
return None, None
max_normal_step = 0
ckpt_list = list(map(lambda a: int(a.strip("/")) if a.strip("/").isdigit() else 0, ckpt_list))
ckpt_list.sort(reverse=True)
for ckpt in ckpt_list:
fns_list = self.storage_manager.get_fns(os.path.join(self.save_ckpt_folder, str(ckpt)))
for fn in fns_list:
if fn.endswith(".step"):
max_normal_step = ckpt
break
if max_normal_step != 0:
break
max_normal_step = ckpt_list[0]
load_normal_ckpt_path = os.path.join(self.save_ckpt_folder, str(max_normal_step))
snapshot_path_0 = os.path.join(self.save_ckpt_folder, "snapshot", "0")
snapshot_path_1 = os.path.join(self.save_ckpt_folder, "snapshot", "1")
ckpt_list_1 = self.storage_manager.get_fns(snapshot_path_0)
ckpt_list_2 = self.storage_manager.get_fns(snapshot_path_1)
max_step_0, max_step_1 = 0, 0
for ckpt in ckpt_list_1:
ckpt = ckpt.strip("/")
if ckpt.endswith(".step"):
max_step_0 = max(max_step_0, int(ckpt.split(".")[0]))
for ckpt in ckpt_list_2:
ckpt = ckpt.strip("/")
if ckpt.endswith(".step"):
max_step_1 = max(max_step_1, int(ckpt.split(".")[0]))
snap_load_path = snapshot_path_0 if max_step_0 > max_step_1 else snapshot_path_1
snap_step = max(max_step_0, max_step_1)
load_path = snap_load_path if snap_step > max_normal_step else load_normal_ckpt_path
load_step = max(snap_step, max_normal_step)
return load_path, load_step
def query_latest_snapshot_step_local(self):
max_step, max_step_path = 0, None
for root, _, files in os.walk(self.save_ckpt_folder, followlinks=True):
for fn in files:
fn = fn.strip("/")
if fn.endswith(".step"):
# We assume that both normal ckpt and snapshot ckpt will store the '.step' file
# as an integrity flag.
step = int(fn.rsplit(".", maxsplit=1)[0])
if max_step < step:
max_step = step
max_step_path = root
return max_step_path, max_step
def query_lastest_ckpt(self):
latest_checkpoint = None
# Training was automatically restarted by the process, forcing the latest snapshot to be read.
if self.save_ckpt_folder:
if self.save_ckpt_folder.startswith("boto3"):
latest_checkpoint, step = self.query_latest_snapshot_step_boto3()
elif self.save_ckpt_folder.startswith("local"):
latest_checkpoint, step = self.query_latest_snapshot_step_local()
else:
latest_checkpoint, step = None, 0
if latest_checkpoint is not None:
if gpc.is_rank_for_log():
logger.info(f"Found latest ckpt : {latest_checkpoint}, step: {step}")
send_alert_message(
address=self.feishu_address,
message=f"Auto restart resume from ckpt-path: '{latest_checkpoint}', step : {step}",
)
else:
if gpc.is_rank_for_log():
send_alert_message(
address=self.feishu_address,
message=f"Can't find snapshot checkpoint, use default load-ckpt path: {latest_checkpoint}",
)
return latest_checkpoint
def try_load_model(self, current_time=""):
model_load_path = None
if self.load_ckpt_folder and self.load_model_only_folder:
raise ValueError(
"Error, try to use both load_ckpt_folder and load_model_only_folder paths, \
if you only need to load model weights (for example starting an SFT task for the first time), \
set load_model_only_folder path, if you need to resume training from ckpt, \
set load_ckpt_folder or use default value \
(if is the default value, internlm will try to load the latest ckpt from save_ckpt_folder)"
)
if self.load_ckpt_folder:
logger.info(
f"===========Resume training from `{self.load_ckpt_folder}` {current_time} on host:"
f"{socket.gethostname()}==========="
)
model_load_path = self.load_ckpt_folder
elif self.load_model_only_folder:
logger.info(
f"===========SFT training from `{self.load_model_only_folder}` {current_time} on host:"
f"{socket.gethostname()}==========="
)
model_load_path = self.load_model_only_folder
else:
logger.info(
f"===========New Run {current_time} on host:{socket.gethostname()},rank={gpc.get_global_rank()},"
f"tp={gpc.get_local_rank(ParallelMode.TENSOR)},pp={gpc.get_local_rank(ParallelMode.PIPELINE)},"
f"dp={gpc.get_local_rank(ParallelMode.DATA)}==========="
)
# Loading model weights must be done before zero is initialized.
if model_load_path is not None:
load_model_checkpoint(folder=model_load_path, model=self.model)
def try_resume_traing(self, lr_scheduler, optimizer, lr, train_state, train_dl):
"""Attempt to restore the training state of the last ckpt.
Args:
lr_scheduler (_LRScheduler): lr_scheduler object.
optimizer (Optimizer): optimizer object.
lr (float): learning rate.
train_state (dict): traing states.
train_dl (DataLoader): traning dataloader object
"""
if self.load_ckpt_folder is not None:
# load lr scheduler states.
load_scheduler(self.load_ckpt_folder, lr_scheduler, optimizer, lr, train_state)
# load training states.
load_context(self.load_ckpt_folder, train_dl, train_state)
# load dataloader sampler states.
load_sampler(self.load_ckpt_folder, train_dl.batch_sampler)
# load optimzier states.
if self.load_optimizer:
load_optimizer_checkpoint(self.load_ckpt_folder, optimizer)
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
def save_checkpoint(self, folder, model, optimizer, scheduler, train_state: TrainState, model_config: Dict = None):
"""
Save checkpoint to the given folder path.
"""
start = time.time()
self.set_save_folder(folder, train_state.step_count)
torch.distributed.barrier()
if gpc.is_rank_for_log():
logger.info(f"Saving checkpoint to `{folder}` at batch count:{train_state.step_count}...")
timer("save-model").start()
save_model_checkpoint(folder=folder, model=model)
timer("save-model").stop()
timer("save-optimizer").start()
save_optimizer_checkpoint(optim=optimizer, state_path=folder)
timer("save-optimizer").stop()
if gpc.is_rank_for_log():
scheduler_states = scheduler.state_dict()
llm_save(os.path.join(folder, "schedulder.pt"), saved_obj=scheduler_states)
sampler_state = train_state.batch_sampler.state_dict()
llm_save(os.path.join(folder, "sampler.pt"), saved_obj=sampler_state)
llm_save(os.path.join(folder, "context.pt"), saved_obj=train_state.state_dict())
if model_config is not None:
llm_save(os.path.join(folder, "model_config.pt"), saved_obj=model_config)
torch.distributed.barrier()
if gpc.is_rank_for_log():
timer.log(["save-model", "save-optimizer"], logger=logger)
logger.info(f"Step: {train_state.step_count}, rank 0 save ckpt use {time.time() - start:.3f} s")
if self.storage_manager.async_mode is False:
llm_save(
os.path.join(folder, f"{train_state.step_count}.step"),
saved_obj=dict({"step": train_state.step_count}),
)
def set_save_folder(self, folder, step):
self.storage_manager.latest_save_folder = folder
self.storage_manager.latest_save_step = step