add fused precision support for norm

pull/319/head
Qu Wenwen 2023-09-18 19:02:07 +08:00
parent ab513e1ddd
commit 98329da327
4 changed files with 128 additions and 4 deletions

View File

@ -3,7 +3,8 @@
# adopted from https://github.com/hpcaitech/ColossalAI/tree/main/colossalai/amp
from typing import Any
from functools import partial
from typing import Any, Union
import torch
import torch.distributed as dist
@ -15,6 +16,14 @@ from internlm.core.context import ParallelMode
from internlm.core.context.parallel_context import global_context as gpc
def set_fp32_attr_to_module(module: nn.Module):
setattr(module, "is_fp32_module", True)
def module_has_fp32_attr(module: nn.Module):
return hasattr(module, "is_fp32_module") and getattr(module, "is_fp32_module")
class NaiveAMPModel(nn.Module):
"""
This is a wrapper class for a model that automatically casts the model, its inputs, and outputs into fp16.
@ -51,6 +60,9 @@ class NaiveAMPModel(nn.Module):
self._sync_buf = False
self._first_eval_run = False
# register hook for fp32 module
self._register_fp32_parameters_hook()
@property
def sync_buffer(self):
"""Returns the current state of the buffer synchronization."""
@ -134,3 +146,55 @@ class NaiveAMPModel(nn.Module):
if self._output_to_fp32:
out = self.convert_to_fp32(out)
return out
def _register_fp32_parameters_hook(self) -> None:
dtype = torch.float32
def _pre_forward_hook(model: nn.Module, inputs: tuple): # pylint: disable=W0613
inputs_fp32 = []
for input_data_ in inputs:
if isinstance(input_data_, Tensor) and input_data_.dtype is not dtype:
inputs_fp32.append(input_data_.to(dtype))
else:
inputs_fp32.append(input_data_)
return tuple(inputs_fp32)
def _post_forward_hook(model: nn.Module, inputs: tuple, outputs: Union[tuple, Tensor]): # pylint: disable=W0613
outputs_ = []
assert isinstance(outputs, (Tensor, tuple))
if isinstance(outputs, tuple):
for output_data_ in outputs:
if isinstance(output_data_, Tensor) and output_data_.dtype is not self.dtype:
outputs_.append(output_data_.to(self.dtype))
else:
outputs_.append(output_data_)
return tuple(outputs_)
else:
return outputs.to(self.dtype)
# just want to share same for loop for ModuleList and Module
if not isinstance(self.model, nn.ModuleList):
model = [self.model]
modules = []
# record the modules to transformer/embeding/head/norm block
for _chunk in model:
if isinstance(_chunk, NaiveAMPModel):
_chunk = _chunk.model
for _, sub_module in _chunk.named_modules():
# should be the transformer block definaton in modeling_xxx.py
if isinstance(sub_module, nn.ModuleList):
for _, module in enumerate(sub_module):
modules.append(module)
else:
# embedding, head, etc that out of the transformer block
modules.append(sub_module)
# register_forward_pre_hook for transformer/embeding/norm/xxx block
for sub_module in modules:
if module_has_fp32_attr(sub_module):
sub_module.to(dtype)
sub_module.register_forward_pre_hook(partial(_pre_forward_hook))
sub_module.register_forward_hook(partial(_post_forward_hook))

View File

@ -11,6 +11,7 @@ from torch import nn
from internlm.core.context import IS_TENSOR_PARALLEL, ParallelMode
from internlm.core.context.parallel_context import global_context as gpc
from internlm.core.naive_amp import set_fp32_attr_to_module
from internlm.initialize.initialize_tensor import normal_, scaled_init_method_normal
from internlm.model.embedding import Embedding1D
from internlm.model.linear import (
@ -101,6 +102,8 @@ class PackedFlashBaseLayer1D(nn.Module):
else:
self.norm1 = nn.LayerNorm(hidden_size, eps=layer_norm_epsilon)
self.norm2 = nn.LayerNorm(hidden_size, eps=layer_norm_epsilon)
set_fp32_attr_to_module(self.norm1)
set_fp32_attr_to_module(self.norm2)
if use_swiglu:
self.mlp = FeedForward(
@ -334,6 +337,7 @@ class PackedFlashInternLm1D(nn.Module):
self.norm = RMSNorm(hidden_size, eps=layer_norm_epsilon)
else:
self.norm = nn.LayerNorm(hidden_size, eps=layer_norm_epsilon)
set_fp32_attr_to_module(self.norm)
self.head = head_cls(
in_features=hidden_size,
out_features=gpc.get_world_size(ParallelMode.TENSOR) if is_reward else vocab_size,

View File

@ -31,7 +31,7 @@ from internlm.solver.beta2_scheduler import Beta2Scheduler
from internlm.solver.lr_scheduler import FineTuneCosineAnnealingWarmupLR
from internlm.solver.optimizer import HybridZeroOptimizer
from internlm.solver.optimizer.utils import ParamBcastSyncHandler
from internlm.utils.common import DummyProfile
from internlm.utils.common import DummyProfile, create_param_groups
from internlm.utils.logger import get_logger
from internlm.utils.megatron_timers import megatron_timer as timer
from internlm.utils.parallel import (
@ -109,8 +109,9 @@ def initialize_optimizer(model: Union[nn.Module, nn.ModuleList]):
param_bcast_sync_handler = None
adam_cfg = gpc.config.adam
params = create_param_groups(model, adam_cfg.weight_decay)
naive_optimizer = torch.optim.AdamW(
params=[{"params": model.parameters(), "weight_decay": adam_cfg.weight_decay}],
params=params,
lr=adam_cfg.lr,
betas=(adam_cfg.adam_beta1, adam_cfg.adam_beta2),
eps=adam_cfg.adam_eps,

View File

@ -7,7 +7,7 @@ import os
import random
from contextlib import contextmanager
from datetime import datetime
from typing import Union
from typing import Dict, Tuple, Union
import numpy as np
import torch
@ -236,3 +236,58 @@ class DummyProfile:
def step(self):
pass
def split_params_into_different_groups_for_optimizer(param_groups: Tuple[Dict]) -> Tuple[Dict]:
"""Split parameters into different MoE groups for optimizer
Compatiable with muiltiple param groups, each should have a name
Args:
param_groups (Tuple[Dict]):
The list of parameter groups to split
Returns:
Tuple[Dict]:
list of MoE/non-MoE groups for optimizer
"""
if isinstance(param_groups, tuple):
param_groups = list(param_groups) # Tuple cannot be modified
elif isinstance(param_groups, dict):
param_groups = [param_groups]
elif not isinstance(param_groups, list):
raise ValueError(f"Unknown param group type of {type(param_groups)}")
fp32_group = {}
# Create fp32 and moe groups and copy origin attribute
for param_group in param_groups:
# copy attribute for fp32 group
fp32_group["name"] = "fp32"
fp32_group["gate"] = True
for ori_key in param_group.keys():
if ori_key != "name":
if ori_key == "params":
fp32_group[ori_key] = []
else:
fp32_group[ori_key] = param_group[ori_key]
# Assign param
for param_group in param_groups:
new_params = []
for param in param_group["params"]:
if param.dtype == torch.float32:
fp32_group["params"].append(param)
else:
new_params.append(param)
# origin group without fp32 or moe parameter
param_group["params"] = new_params
# append to origin group
param_groups.append(fp32_group)
return tuple(param_groups)
def create_param_groups(model, weight_decay):
parameters = {"params": list(model.parameters()), "name": "default", "weight_decay": weight_decay}
return split_params_into_different_groups_for_optimizer(parameters)