InternLM/internlm/utils/common.py

294 lines
8.5 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import bisect
import inspect
import os
import random
from contextlib import contextmanager
from datetime import datetime
from typing import Dict, Tuple, Union
import numpy as np
import torch
import internlm
CURRENT_TIME = None
def parse_args():
parser = internlm.get_default_parser()
args = parser.parse_args()
return args
def get_master_node():
import subprocess
if os.getenv("SLURM_JOB_ID") is None:
raise RuntimeError("get_master_node can only used in Slurm launch!")
result = subprocess.check_output('scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1', shell=True)
result = result.decode("utf8").strip()
return result
def move_norm_to_cuda(norm: Union[float, torch.Tensor]) -> Union[float, torch.Tensor]:
if torch.is_tensor(norm) and norm.device.type != "cuda":
norm = norm.to(torch.cuda.current_device())
return norm
def _move_tensor(element):
if not torch.is_tensor(element):
# we expecte the data type if a list of dictionaries
for item in element:
if isinstance(item, dict):
for key, value in item.items():
assert not value.is_cuda, "elements are already on devices."
item[key] = value.to(get_current_device()).detach()
elif isinstance(item, list):
for index, value in enumerate(item):
assert not value.is_cuda, "elements are already on devices."
item[index] = value.to(get_current_device()).detach()
elif torch.is_tensor(item):
if not item.is_cuda:
item = item.to(get_current_device()).detach()
else:
assert torch.is_tensor(element), f"element should be of type tensor, but got {type(element)}"
if not element.is_cuda:
element = element.to(get_current_device()).detach()
return element
def move_to_device(data):
if isinstance(data, torch.Tensor):
data = data.to(get_current_device())
elif isinstance(data, (list, tuple)):
data_to_return = []
for element in data:
if isinstance(element, dict):
data_to_return.append({k: _move_tensor(v) for k, v in element.items()})
else:
data_to_return.append(_move_tensor(element))
data = data_to_return
elif isinstance(data, dict):
data = {k: _move_tensor(v) for k, v in data.items()}
else:
raise TypeError(f"Expected batch data to be of type torch.Tensor, list, tuple, or dict, but got {type(data)}")
return data
def get_tensor_norm(norm: Union[float, torch.Tensor], move_to_cuda) -> torch.Tensor:
if isinstance(norm, float):
norm = torch.Tensor([norm])
if move_to_cuda:
norm = norm.to(torch.cuda.current_device())
return norm
def get_current_device() -> torch.device:
"""
Returns currently selected device (gpu/cpu).
If cuda available, return gpu, otherwise return cpu.
"""
if torch.cuda.is_available():
return torch.device(f"cuda:{torch.cuda.current_device()}")
else:
return torch.device("cpu")
def get_batch_size(data):
if isinstance(data, torch.Tensor):
return data.size(0)
elif isinstance(data, (list, tuple)):
if isinstance(data[0], dict):
return data[0][list(data[0].keys())[0]].size(0)
return data[0].size(0)
elif isinstance(data, dict):
return data[list(data.keys())[0]].size(0)
def filter_kwargs(func, kwargs):
sig = inspect.signature(func)
return {k: v for k, v in kwargs.items() if k in sig.parameters}
def launch_time():
global CURRENT_TIME
if not CURRENT_TIME:
CURRENT_TIME = datetime.now().strftime("%b%d_%H-%M-%S")
return CURRENT_TIME
def set_random_seed(seed):
"""Set random seed for reproducability."""
# It is recommended to use this only when inference.
if seed is not None:
assert seed > 0
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# if you are using multi-GPU.
torch.cuda.manual_seed_all(seed)
@contextmanager
def conditional_context(context_manager, enable=True):
if enable:
with context_manager:
yield
else:
yield
class BatchSkipper:
"""
BatchSkipper is used to determine whether to skip the current batch_idx.
"""
def __init__(self, skip_batches):
if skip_batches == "":
pass
intervals = skip_batches.split(",")
spans = []
if skip_batches != "":
for interval in intervals:
if "-" in interval:
start, end = map(int, interval.split("-"))
else:
start, end = int(interval), int(interval)
if spans:
assert spans[-1] <= start
spans.extend((start, end + 1))
self.spans = spans
def __call__(self, batch_count):
index = bisect.bisect_right(self.spans, batch_count)
return index % 2 == 1
class SingletonMeta(type):
"""
Singleton Meta.
"""
_instances = {}
def __call__(cls, *args, **kwargs):
if cls not in cls._instances:
cls._instances[cls] = super().__call__(*args, **kwargs)
else:
assert (
len(args) == 0 and len(kwargs) == 0
), f"{cls.__name__} is a singleton class and a instance has been created."
return cls._instances[cls]
def get_megatron_flops(
elapsed_time_per_iter,
checkpoint=False,
seq_len=2048,
hidden_size=12,
num_layers=32,
vocab_size=12,
global_batch_size=4,
global_world_size=1,
mlp_ratio=4,
use_swiglu=True,
):
"""
Calc flops based on the paper of Megatron https://deepakn94.github.io/assets/papers/megatron-sc21.pdf
"""
checkpoint_activations_factor = 4 if checkpoint else 3
if use_swiglu:
mlp_ratio = mlp_ratio * 3 / 2
flops_per_iteration = (
checkpoint_activations_factor
* (
(8 + mlp_ratio * 4) * global_batch_size * seq_len * hidden_size**2
+ 4 * global_batch_size * seq_len**2 * hidden_size
)
) * num_layers + 6 * global_batch_size * seq_len * hidden_size * vocab_size
tflops = flops_per_iteration / (elapsed_time_per_iter * global_world_size * (10**12))
return tflops
class DummyProfile:
"""
Dummy Profile.
"""
def __init__(self, *args, **kwargs) -> None:
pass
def __enter__(self):
return self
def __exit__(self, a, b, c):
pass
def step(self):
pass
def split_params_into_different_groups_for_optimizer(param_groups: Tuple[Dict]) -> Tuple[Dict]:
"""Split parameters into different MoE groups for optimizer
Compatiable with muiltiple param groups, each should have a name
Args:
param_groups (Tuple[Dict]):
The list of parameter groups to split
Returns:
Tuple[Dict]:
list of MoE/non-MoE groups for optimizer
"""
if isinstance(param_groups, tuple):
param_groups = list(param_groups) # Tuple cannot be modified
elif isinstance(param_groups, dict):
param_groups = [param_groups]
elif not isinstance(param_groups, list):
raise ValueError(f"Unknown param group type of {type(param_groups)}")
fp32_group = {}
# Create fp32 and moe groups and copy origin attribute
for param_group in param_groups:
# copy attribute for fp32 group
fp32_group["name"] = "fp32"
fp32_group["gate"] = True
for ori_key in param_group.keys():
if ori_key != "name":
if ori_key == "params":
fp32_group[ori_key] = []
else:
fp32_group[ori_key] = param_group[ori_key]
# Assign param
for param_group in param_groups:
new_params = []
for param in param_group["params"]:
if param.dtype == torch.float32:
fp32_group["params"].append(param)
else:
new_params.append(param)
# origin group without fp32 or moe parameter
param_group["params"] = new_params
# append to origin group
param_groups.append(fp32_group)
return tuple(param_groups)
def create_param_groups(model, weight_decay):
parameters = {"params": list(model.parameters()), "name": "default", "weight_decay": weight_decay}
return split_params_into_different_groups_for_optimizer(parameters)