mirror of https://github.com/InternLM/InternLM
refactor code
parent
b2f3611b47
commit
4a47872382
|
@ -149,11 +149,16 @@ class ParallelContext(metaclass=SingletonMeta):
|
|||
self.num_processes_on_current_node = -1
|
||||
self.virtual_pipeline_parallel_size = None
|
||||
self.virtual_pipeline_parallel_rank = None
|
||||
self._expert_parallel_group_names = []
|
||||
|
||||
@property
|
||||
def config(self):
|
||||
return self._config
|
||||
|
||||
@property
|
||||
def expert_parallel_group_names(self):
|
||||
return self._expert_parallel_group_names
|
||||
|
||||
def load_config(self, config: Union[dict, str]):
|
||||
"""Loads the configuration from either a dict or a file.
|
||||
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
import typing
|
||||
from typing import Dict, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
|
@ -20,36 +19,6 @@ from internlm.utils.logger import get_logger
|
|||
logger = get_logger(__file__)
|
||||
|
||||
|
||||
def has_moe_layers(m):
|
||||
has_moe = False
|
||||
num_experts = 0
|
||||
|
||||
for _, module in m.named_modules():
|
||||
if isinstance(module, MoE):
|
||||
has_moe = True
|
||||
num_experts = module.num_experts
|
||||
break
|
||||
return has_moe, num_experts
|
||||
|
||||
|
||||
def is_moe_param(param: torch.Tensor) -> bool:
|
||||
if hasattr(param, "is_expert") and param.is_expert:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def is_gate_param(param: torch.Tensor) -> bool:
|
||||
if hasattr(param, "is_gate") and param.is_gate:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def is_norm_param(param: torch.Tensor) -> bool:
|
||||
if hasattr(param, "is_norm") and param.is_norm:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
class MoE(torch.nn.Module):
|
||||
"""Initialize an MoE layer.
|
||||
|
||||
|
@ -110,7 +79,9 @@ class MoE(torch.nn.Module):
|
|||
)
|
||||
|
||||
# for elastic expert paralle, experts may have multiple groups
|
||||
expert_group_name = f"ep_size_{self.ep_size}"
|
||||
expert_group_name = f"moe_ep_size_{self.ep_size}"
|
||||
if expert_group_name not in gpc.expert_parallel_group_names:
|
||||
gpc.expert_parallel_group_names.append(expert_group_name)
|
||||
experts = torch.nn.ModuleList(
|
||||
[
|
||||
# TODO have trouble when use internlm.model.linear.FeedForward
|
||||
|
@ -188,118 +159,3 @@ class MoE(torch.nn.Module):
|
|||
coef = torch.nn.functional.softmax(coef, dim=-1)
|
||||
output = output * coef[..., 0:1] + output_mlp * coef[..., 1:]
|
||||
return output, self.moe_layer.l_aux, self.moe_layer.exp_counts
|
||||
|
||||
|
||||
def split_params_into_different_moe_groups_for_optimizer(param_groups: Tuple[Dict], max_group_size=None) -> Tuple[Dict]:
|
||||
"""Split parameters into different MoE groups for optimizer
|
||||
Compatiable with muiltiple param groups, each should have a name
|
||||
|
||||
Args:
|
||||
param_groups (Tuple[Dict]):
|
||||
The list of parameter groups to split
|
||||
|
||||
Returns:
|
||||
Tuple[Dict]:
|
||||
list of MoE/non-MoE groups for optimizer
|
||||
"""
|
||||
if isinstance(param_groups, tuple):
|
||||
param_groups = list(param_groups) # Tuple cannot be modified
|
||||
elif isinstance(param_groups, dict):
|
||||
param_groups = [param_groups]
|
||||
elif not isinstance(param_groups, list):
|
||||
raise ValueError(f"Unknown param group type of {type(param_groups)}")
|
||||
|
||||
# gather all data parallel group names
|
||||
data_parallel_group_names = set()
|
||||
for param_group in param_groups:
|
||||
for param in param_group["params"]:
|
||||
if is_moe_param(param):
|
||||
data_parallel_group_names.add(param.group_name)
|
||||
data_parallel_group_names = list(data_parallel_group_names)
|
||||
group_moe = {}
|
||||
gate_group = {}
|
||||
norm_group = {}
|
||||
# Create the param MoE groups, leave param assign to next step
|
||||
for param_group in param_groups:
|
||||
group_moe[param_group["name"]] = {}
|
||||
for key in data_parallel_group_names:
|
||||
group_moe[param_group["name"]][key] = {}
|
||||
group_moe[param_group["name"]][key]["name"] = key
|
||||
group_moe[param_group["name"]][key]["moe"] = True
|
||||
for ori_key in param_group.keys():
|
||||
if ori_key != "name":
|
||||
if ori_key == "params":
|
||||
group_moe[param_group["name"]][key][ori_key] = []
|
||||
else:
|
||||
group_moe[param_group["name"]][key][ori_key] = param_group[ori_key]
|
||||
gate_group["name"] = "gate"
|
||||
gate_group["gate"] = True
|
||||
for ori_key in param_group.keys():
|
||||
if ori_key != "name":
|
||||
if ori_key == "params":
|
||||
gate_group[ori_key] = []
|
||||
else:
|
||||
gate_group[ori_key] = param_group[ori_key]
|
||||
norm_group["name"] = "norm"
|
||||
norm_group["norm"] = True
|
||||
for ori_key in param_group.keys():
|
||||
if ori_key != "name":
|
||||
if ori_key == "params":
|
||||
norm_group[ori_key] = []
|
||||
else:
|
||||
norm_group[ori_key] = param_group[ori_key]
|
||||
# Assign param
|
||||
norm_params = []
|
||||
gate_params = []
|
||||
for param_group in param_groups:
|
||||
new_params = []
|
||||
for param in param_group["params"]:
|
||||
if is_moe_param(param):
|
||||
group_moe[param_group["name"]][param.group_name]["params"].append(param)
|
||||
elif is_norm_param(param):
|
||||
norm_params.append(param)
|
||||
elif is_gate_param(param):
|
||||
gate_params.append(param)
|
||||
else:
|
||||
new_params.append(param)
|
||||
param_group["params"] = new_params
|
||||
norm_group["params"] = norm_params
|
||||
gate_group["params"] = gate_params
|
||||
param_groups.append(norm_group)
|
||||
param_groups.append(gate_group)
|
||||
|
||||
# Flatten the moe groups
|
||||
if max_group_size is not None:
|
||||
for _, v in group_moe.items():
|
||||
for _, v1 in v.items():
|
||||
cur_group = []
|
||||
all_groups = []
|
||||
size_of_cur_group = 0
|
||||
for param in v1["params"]:
|
||||
if size_of_cur_group + param.numel() <= max_group_size:
|
||||
cur_group.append(param)
|
||||
size_of_cur_group += param.numel()
|
||||
else:
|
||||
all_groups.append(cur_group)
|
||||
cur_group = [param]
|
||||
size_of_cur_group = param.numel()
|
||||
if cur_group:
|
||||
all_groups.append(cur_group)
|
||||
for group in all_groups:
|
||||
new_dict = {}
|
||||
for key, val in v1.items():
|
||||
if key != "params":
|
||||
new_dict[key] = val
|
||||
new_dict["params"] = group
|
||||
param_groups.append(new_dict)
|
||||
else:
|
||||
for _, v in group_moe.items():
|
||||
for _, v1 in v.items():
|
||||
param_groups.append(v1)
|
||||
return tuple(param_groups)
|
||||
|
||||
|
||||
def create_moe_param_groups(model, weight_decay):
|
||||
parameters = {"params": list(model.parameters()), "name": "default", "weight_decay": weight_decay}
|
||||
|
||||
return split_params_into_different_moe_groups_for_optimizer(parameters)
|
||||
|
|
|
@ -207,3 +207,21 @@ def try_import_RMSNorm():
|
|||
from internlm.model.norm import RMSNormTorch as RMSNorm
|
||||
|
||||
return RMSNorm
|
||||
|
||||
|
||||
def is_moe_param(param: torch.Tensor) -> bool:
|
||||
if hasattr(param, "is_expert") and param.is_expert:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def is_gate_param(param: torch.Tensor) -> bool:
|
||||
if hasattr(param, "is_gate") and param.is_gate:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def is_norm_param(param: torch.Tensor) -> bool:
|
||||
if hasattr(param, "is_norm") and param.is_norm:
|
||||
return True
|
||||
return False
|
||||
|
|
|
@ -11,7 +11,7 @@ from torch.optim import Optimizer
|
|||
|
||||
from internlm.core.context import Config, ParallelMode
|
||||
from internlm.core.context import global_context as gpc
|
||||
from internlm.model.moe import is_moe_param
|
||||
from internlm.model.utils import is_moe_param
|
||||
from internlm.monitor import send_alert_message
|
||||
from internlm.solver.optimizer.store import (
|
||||
BucketStore,
|
||||
|
|
|
@ -25,13 +25,13 @@ from internlm.data.packed_dataset import (
|
|||
get_packed_dataset_without_short_length,
|
||||
)
|
||||
from internlm.data.utils import DATASET_TYPE_IDS_MAP, unpack_data
|
||||
from internlm.model.moe import create_moe_param_groups
|
||||
from internlm.monitor import send_heartbeat, set_env_var
|
||||
from internlm.monitor.monitor import monitor_manager as mm
|
||||
from internlm.solver.beta2_scheduler import Beta2Scheduler
|
||||
from internlm.solver.lr_scheduler import FineTuneCosineAnnealingWarmupLR
|
||||
from internlm.solver.optimizer import HybridZeroOptimizer
|
||||
from internlm.solver.optimizer.utils import ParamBcastSyncHandler
|
||||
from internlm.train.utils import create_param_groups
|
||||
from internlm.utils.common import DummyProfile
|
||||
from internlm.utils.logger import get_logger
|
||||
from internlm.utils.megatron_timers import megatron_timer as timer
|
||||
|
@ -112,7 +112,7 @@ def initialize_optimizer(model: Union[nn.Module, nn.ModuleList]):
|
|||
adam_cfg = gpc.config.adam
|
||||
# split the moe parameters into different groups
|
||||
if gpc.config.model.num_experts > 1:
|
||||
params = create_moe_param_groups(model, adam_cfg.weight_decay)
|
||||
params = create_param_groups(model, adam_cfg.weight_decay)
|
||||
else:
|
||||
params = [{"params": model.parameters(), "weight_decay": adam_cfg.weight_decay}]
|
||||
naive_optimizer = torch.optim.AdamW(
|
||||
|
|
|
@ -0,0 +1,73 @@
|
|||
from typing import Dict, Tuple
|
||||
|
||||
from internlm.core.context.parallel_context import global_context as gpc
|
||||
from internlm.model.utils import is_gate_param, is_moe_param, is_norm_param
|
||||
|
||||
|
||||
def split_params_into_different_groups_for_optimizer(param_groups: Tuple[Dict]) -> Tuple[Dict]:
|
||||
"""Split parameters into different MoE groups for optimizer
|
||||
Compatiable with muiltiple param groups, each should have a name
|
||||
|
||||
Args:
|
||||
param_groups (Tuple[Dict]):
|
||||
The list of parameter groups to split
|
||||
|
||||
Returns:
|
||||
Tuple[Dict]:
|
||||
list of MoE/non-MoE groups for optimizer
|
||||
"""
|
||||
if isinstance(param_groups, tuple):
|
||||
param_groups = list(param_groups) # Tuple cannot be modified
|
||||
elif isinstance(param_groups, dict):
|
||||
param_groups = [param_groups]
|
||||
elif not isinstance(param_groups, list):
|
||||
raise ValueError(f"Unknown param group type of {type(param_groups)}")
|
||||
|
||||
new_groups = {}
|
||||
for pgroup in param_groups:
|
||||
new_groups[pgroup["name"]] = {}
|
||||
|
||||
# create new groups for gate and norm
|
||||
for key in ["gate", "norm"]:
|
||||
new_groups[pgroup["name"]][key] = {}
|
||||
new_groups[pgroup["name"]][key]["name"] = key
|
||||
new_groups[pgroup["name"]][key][key] = True
|
||||
# create moe groups
|
||||
for key in gpc.expert_parallel_group_names:
|
||||
new_groups[pgroup["name"]][key] = {}
|
||||
new_groups[pgroup["name"]][key]["name"] = key
|
||||
new_groups[pgroup["name"]][key]["moe"] = True
|
||||
|
||||
# copy attribute from origin group
|
||||
for ori_key in pgroup.keys():
|
||||
for key in new_groups[pgroup["name"]].keys():
|
||||
if ori_key != "name":
|
||||
if ori_key == "params":
|
||||
new_groups[pgroup["name"]][key][ori_key] = []
|
||||
else:
|
||||
new_groups[pgroup["name"]][key][ori_key] = pgroup[ori_key]
|
||||
# Assign param
|
||||
origin_params = []
|
||||
for param in pgroup["params"]:
|
||||
if is_moe_param(param):
|
||||
new_groups[pgroup["name"]][param.group_name]["params"].append(param)
|
||||
elif is_norm_param(param):
|
||||
new_groups[pgroup["name"]]["norm"]["params"].append(param)
|
||||
elif is_gate_param(param):
|
||||
new_groups[pgroup["name"]]["gate"]["params"].append(param)
|
||||
else:
|
||||
origin_params.append(param)
|
||||
|
||||
pgroup["params"] = origin_params
|
||||
|
||||
for _, v in new_groups.items():
|
||||
for _, v1 in v.items():
|
||||
param_groups.append(v1)
|
||||
|
||||
return tuple(param_groups)
|
||||
|
||||
|
||||
def create_param_groups(model, weight_decay):
|
||||
parameters = {"params": list(model.parameters()), "name": "default", "weight_decay": weight_decay}
|
||||
|
||||
return split_params_into_different_groups_for_optimizer(parameters)
|
|
@ -5,7 +5,7 @@ import torch.distributed as dist
|
|||
|
||||
from internlm.core.context import IS_TENSOR_PARALLEL, ParallelMode
|
||||
from internlm.core.context import global_context as gpc
|
||||
from internlm.model.moe import is_moe_param
|
||||
from internlm.model.utils import is_moe_param
|
||||
|
||||
|
||||
def is_model_parallel_parameter(p):
|
||||
|
|
Loading…
Reference in New Issue