mirror of https://github.com/InternLM/InternLM
clean doc
parent
fd6d8e6e8f
commit
40f8e2ed19
|
@ -1,55 +0,0 @@
|
||||||
# Inference by LMDeploy
|
|
||||||
|
|
||||||
English | [简体中文](lmdeploy_zh_zh-CN.md)
|
|
||||||
|
|
||||||
[LMDeploy](https://github.com/InternLM/lmdeploy) is an efficient, user-friendly toolkit designed for compressing, deploying, and serving LLM models.
|
|
||||||
|
|
||||||
This article primarily highlights the basic usage of LMDeploy. For a comprehensive understanding of the toolkit, we invite you to refer to [the tutorials](https://lmdeploy.readthedocs.io/en/latest/).
|
|
||||||
|
|
||||||
## Installation
|
|
||||||
|
|
||||||
Install lmdeploy with pip (python 3.8+)
|
|
||||||
|
|
||||||
```shell
|
|
||||||
pip install lmdeploy
|
|
||||||
```
|
|
||||||
|
|
||||||
## Offline batch inference
|
|
||||||
|
|
||||||
With just 4 lines of codes, you can execute batch inference using a list of prompts:
|
|
||||||
|
|
||||||
```python
|
|
||||||
from lmdeploy import pipeline
|
|
||||||
pipe = pipeline("internlm/internlm2-chat-7b")
|
|
||||||
response = pipe(["Hi, pls intro yourself", "Shanghai is"])
|
|
||||||
print(response)
|
|
||||||
```
|
|
||||||
|
|
||||||
With dynamic ntk, LMDeploy can handle a context length of 200K for `InternLM2`:
|
|
||||||
|
|
||||||
```python
|
|
||||||
from lmdeploy import pipeline, TurbomindEngineConfig
|
|
||||||
engine_config = TurbomindEngineConfig(session_len=200000,
|
|
||||||
rope_scaling_factor=2.0),
|
|
||||||
pipe = pipeline("internlm/internlm2-chat-7b", engine_config)
|
|
||||||
prompt = 'Please offer a long prompt here'
|
|
||||||
print(response)
|
|
||||||
```
|
|
||||||
|
|
||||||
For more information about LMDeploy pipeline usage, please refer to [here](https://lmdeploy.readthedocs.io/en/latest/inference/pipeline.html).
|
|
||||||
|
|
||||||
## Serving
|
|
||||||
|
|
||||||
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
|
||||||
|
|
||||||
```shell
|
|
||||||
lmdeploy serve api_server internlm/internlm2-chat-7b
|
|
||||||
```
|
|
||||||
|
|
||||||
The default port of `api_server` is `23333`. After the server is launched, you can communicate with server on terminal through `api_client`:
|
|
||||||
|
|
||||||
```shell
|
|
||||||
lmdeploy serve api_client http://0.0.0.0:23333
|
|
||||||
```
|
|
||||||
|
|
||||||
Alternatively, you can test the server's APIs oneline through the Swagger UI at `http://0.0.0.0:23333`. A detailed overview of the API specification is available [here](https://lmdeploy.readthedocs.io/en/latest/serving/restful_api.html).
|
|
|
@ -1,55 +0,0 @@
|
||||||
# LMDeploy 推理
|
|
||||||
|
|
||||||
[English](lmdeploy.md) | 简体中文
|
|
||||||
|
|
||||||
[LMDeploy](https://github.com/InternLM/lmdeploy) 是一个高效且友好的 LLM 模型部署工具箱,功能涵盖了量化、推理和服务。
|
|
||||||
|
|
||||||
本文主要介绍 LMDeploy 的基本用法,包括[安装](#安装)、[离线批处理](#离线批处理)和[推理服务](#推理服务)。更全面的介绍请参考 [LMDeploy 用户指南](https://lmdeploy.readthedocs.io/zh-cn/latest/)。
|
|
||||||
|
|
||||||
|
|
||||||
## 安装
|
|
||||||
|
|
||||||
使用 pip(python 3.8+)安装 LMDeploy
|
|
||||||
|
|
||||||
```shell
|
|
||||||
pip install lmdeploy
|
|
||||||
```
|
|
||||||
|
|
||||||
## 离线批处理
|
|
||||||
|
|
||||||
只用以下 4 行代码,就可以完成 prompts 的批处理:
|
|
||||||
|
|
||||||
```python
|
|
||||||
from lmdeploy import pipeline
|
|
||||||
pipe = pipeline("internlm/internlm2-chat-7b")
|
|
||||||
response = pipe(["Hi, pls intro yourself", "Shanghai is"])
|
|
||||||
print(response)
|
|
||||||
```
|
|
||||||
|
|
||||||
LMDeploy 实现了 dynamic ntk,支持长文本外推。使用如下代码,可以把 InternLM2 的文本外推到 200K:
|
|
||||||
```python
|
|
||||||
from lmdeploy import pipeline, TurbomindEngineConfig
|
|
||||||
engine_config = TurbomindEngineConfig(session_len=200000,
|
|
||||||
rope_scaling_factor=2.0),
|
|
||||||
pipe = pipeline("internlm/internlm2-chat-7b", engine_config)
|
|
||||||
prompt = 'Please offer a long prompt here'
|
|
||||||
print(response)
|
|
||||||
```
|
|
||||||
|
|
||||||
更多关于 pipeline 的使用方式,请参考[这里](https://lmdeploy.readthedocs.io/zh-cn/latest/inference/pipeline.html)
|
|
||||||
|
|
||||||
## 推理服务
|
|
||||||
|
|
||||||
LMDeploy `api_server` 支持把模型一键封装为服务,对外提供的 RESTful API 兼容 openai 的接口。以下为服务启动的示例:
|
|
||||||
|
|
||||||
```shell
|
|
||||||
lmdeploy serve api_server internlm/internlm2-chat-7b
|
|
||||||
```
|
|
||||||
|
|
||||||
服务默认端口是23333。在 server 启动后,你可以在终端通过`api_client`与server进行对话,体验对话效果:
|
|
||||||
|
|
||||||
```shell
|
|
||||||
lmdeploy serve api_client http://0.0.0.0:23333
|
|
||||||
```
|
|
||||||
|
|
||||||
此外,你还可以通过 Swagger UI `http://0.0.0.0:23333` 在线阅读和试用 `api_server` 的各接口,也可直接查阅[文档](https://lmdeploy.readthedocs.io/zh-cn/latest/serving/restful_api.html),了解各接口的定义和使用方法。
|
|
Loading…
Reference in New Issue