mirror of https://github.com/InternLM/InternLM
update cn doc
parent
8ff20ff63a
commit
fd6d8e6e8f
10
README.md
10
README.md
|
@ -36,13 +36,15 @@
|
|||
|
||||
## Introduction
|
||||
|
||||
- **200K Context window**: Both base and chat models can work with more than 200K context after being sufficiently trained on 32K-context data. Try it with [LMDeploy](./inference/) for 200K-context inference.
|
||||
InternLM2 series are released with the following features:
|
||||
|
||||
- **Outstanding comprehensive performance**: Significantly better than the last generation in all dimensions including reasoning, code, chat experience, instruction following, and creative writing.
|
||||
- **200K Context window**: Nearly perfect at finding needles in the haystack with 200K-long context, with leading performance on long-context tasks like LongBench and L-Eval. Try it with [LMDeploy](./inference/) for 200K-context inference.
|
||||
|
||||
- **Code interpreter & Data analysis**: New state-of-the-art results in using code interpreter for math problems, also good at data analysis.
|
||||
- **Outstanding comprehensive performance**: Significantly better than the last generation in all dimensions, especially in reasoning, math, code, chat experience, instruction following, and creative writing, with leading performance among open-source models in similar sizes. In some evaluations, InternLM2-Chat-20B may match or even surpass ChatGPT (GPT-3.5).
|
||||
|
||||
- **Stronger tool use**: Excellent zero-shot and multi-step tool calling capabilities, better with [streaming](docs/chat_format.md##streaming-style) and also works with [ReAct](docs/chat_format.md##react-style) format. Try it with [Lagent](./agent/).
|
||||
- **Code interpreter & Data analysis**: With code interpreter, InternLM2-Chat-20B obtains compatible performance with GPT-4 on GSM8K and MATH. InternLM2-Chat also provides data analysis capability.
|
||||
|
||||
- **Stronger tool use**: Based on better tool utilization-related capabilities in instruction following, tool selection and reflection, InternLM2 can support more kinds of agents and multi-step tool calling for complex tasks. See [examples](./agent/).
|
||||
|
||||
## News
|
||||
|
||||
|
|
|
@ -37,9 +37,12 @@
|
|||
|
||||
## 简介
|
||||
|
||||
InternLM 是一个开源的轻量级训练框架,旨在支持大模型训练而无需大量的依赖。通过单一的代码库,它支持在拥有数千个 GPU 的大型集群上进行预训练,并在单个 GPU 上进行微调,同时实现了卓越的性能优化。在1024个 GPU 上训练时,InternLM 可以实现近90%的加速效率。
|
||||
InternLM2 系列模型在本仓库正式发布,具有如下特性:
|
||||
|
||||
基于InternLM训练框架,我们已经发布了两个开源的预训练模型:InternLM-7B 和 InternLM-20B。
|
||||
- 有效支持20万字超长上下文:模型在20万字长输入中几乎完美地实现长文“大海捞针”,而且在 LongBench 和 L-Eval 等长文任务中的表现也达到开源模型中的领先水平。 可以通过 [LMDeploy](./inference/) 尝试20万字超长上下文推理。
|
||||
- 综合性能全面提升:各能力维度相比上一代模型全面进步,在推理、数学、代码、对话体验、指令遵循和创意写作等方面的能力提升尤为显著,综合性能达到同量级开源模型的领先水平,在重点能力评测上 InternLM2-Chat-20B 能比肩甚至超越 ChatGPT (GPT-3.5)。
|
||||
- 代码解释器与数据分析:在配合代码解释器(code-interpreter)的条件下,InternLM2-Chat-20B 在 GSM8K 和 MATH 上可以达到和 GPT-4 相仿的水平。基于在数理和工具方面强大的基础能力,InternLM2-Chat 提供了实用的数据分析能力。
|
||||
- 工具调用能力整体升级:基于更强和更具有泛化性的指令理解、工具筛选与结果反思等能力,新版模型可以更可靠地支持复杂智能体的搭建,支持对工具进行有效的多轮调用,完成较复杂的任务。可以查看更多[样例](./agent/)。
|
||||
|
||||
## 更新
|
||||
|
||||
|
|
Loading…
Reference in New Issue