mirror of https://github.com/InternLM/InternLM
support evaluation with fstp
parent
189a313da6
commit
21c1a7fa47
|
@ -5,7 +5,7 @@ SEQ_LEN = 2048
|
||||||
HIDDEN_SIZE = 4096
|
HIDDEN_SIZE = 4096
|
||||||
NUM_ATTENTION_HEAD = 32
|
NUM_ATTENTION_HEAD = 32
|
||||||
MLP_RATIO = 8 / 3
|
MLP_RATIO = 8 / 3
|
||||||
NUM_LAYER = 4
|
NUM_LAYER = 32
|
||||||
VOCAB_SIZE = 103168
|
VOCAB_SIZE = 103168
|
||||||
|
|
||||||
MODEL_ONLY_FOLDER = "local:llm_ckpts/xxxx"
|
MODEL_ONLY_FOLDER = "local:llm_ckpts/xxxx"
|
||||||
|
@ -155,7 +155,7 @@ tensor parallel: tensor parallel size, usually the number of GPUs per node.
|
||||||
"""
|
"""
|
||||||
parallel = dict(
|
parallel = dict(
|
||||||
zero1=-1,
|
zero1=-1,
|
||||||
tensor=dict(size=2, mode='fstp'), # the mode should be 'origin_tp' or 'fstp'
|
tensor=dict(size=2, mode='origin_tp'), # the mode should be 'origin_tp' or 'fstp'
|
||||||
pipeline=dict(size=1, interleaved_overlap=True),
|
pipeline=dict(size=1, interleaved_overlap=True),
|
||||||
sequence_parallel=True,
|
sequence_parallel=True,
|
||||||
)
|
)
|
||||||
|
|
|
@ -54,7 +54,7 @@ class ScaleColumnParallelLinear(nn.Linear):
|
||||||
self.process_group = process_group
|
self.process_group = process_group
|
||||||
self.weight_scale = weight_scale
|
self.weight_scale = weight_scale
|
||||||
|
|
||||||
def forward(self, input): # pylint: disable=W0622
|
def forward(self, input, gather_dim=0): # pylint: disable=W0622
|
||||||
# If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
|
# If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
|
||||||
# we do an all_gather of x before doing the matmul.
|
# we do an all_gather of x before doing the matmul.
|
||||||
# If not, then the input is already gathered.
|
# If not, then the input is already gathered.
|
||||||
|
@ -68,6 +68,7 @@ class ScaleColumnParallelLinear(nn.Linear):
|
||||||
self.bias,
|
self.bias,
|
||||||
process_group=self.process_group,
|
process_group=self.process_group,
|
||||||
sequence_parallel=gpc.config.parallel.sequence_parallel,
|
sequence_parallel=gpc.config.parallel.sequence_parallel,
|
||||||
|
gather_dim=gather_dim,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@ -121,13 +122,13 @@ class RewardModelLinear(ScaleColumnParallelLinear):
|
||||||
|
|
||||||
|
|
||||||
class ColumnParallelLinearTorch(ColumnParallelLinear):
|
class ColumnParallelLinearTorch(ColumnParallelLinear):
|
||||||
def forward(self, x):
|
def forward(self, x, gather_dim=0):
|
||||||
# If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
|
# If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
|
||||||
# we do an all_gather of x before doing the matmul.
|
# we do an all_gather of x before doing the matmul.
|
||||||
# If not, then the input is already gathered.
|
# If not, then the input is already gathered.
|
||||||
|
|
||||||
return fused_dense_func_torch(
|
return fused_dense_func_torch(
|
||||||
x, self.weight, self.bias, process_group=self.process_group, sequence_parallel=self.sequence_parallel
|
x, self.weight, self.bias, process_group=self.process_group, sequence_parallel=self.sequence_parallel, gather_dim=gather_dim,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -405,12 +405,10 @@ class PackedFlashInternLm1D(nn.Module):
|
||||||
if hasattr(self, "norm"):
|
if hasattr(self, "norm"):
|
||||||
hidden_states = self.norm(hidden_states.float())
|
hidden_states = self.norm(hidden_states.float())
|
||||||
if hasattr(self, "head"):
|
if hasattr(self, "head"):
|
||||||
# if hidden_states.ndim == 3:
|
if hidden_states.ndim == 3:
|
||||||
# import pdb; pdb.set_trace()
|
hidden_states = self.head(hidden_states, gather_dim=1)
|
||||||
# hidden_states = self.head(hidden_states, dim=1)
|
else:
|
||||||
# else:
|
hidden_states = self.head(hidden_states)
|
||||||
# hidden_states = self.head(hidden_states)
|
|
||||||
hidden_states = self.head(hidden_states)
|
|
||||||
|
|
||||||
if not self.parallel_output:
|
if not self.parallel_output:
|
||||||
hidden_states = gather_forward_split_backward(hidden_states, ParallelMode.TENSOR, dim=-1)
|
hidden_states = gather_forward_split_backward(hidden_states, ParallelMode.TENSOR, dim=-1)
|
||||||
|
|
|
@ -5,16 +5,18 @@ from typing import Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from flash_attn.ops.fused_dense import FusedDenseFunc
|
# from flash_attn.ops.fused_dense import FusedDenseFunc
|
||||||
from flash_attn.utils.distributed import (
|
from flash_attn.utils.distributed import (
|
||||||
all_gather_raw,
|
# all_gather_raw,
|
||||||
all_reduce_raw,
|
all_reduce_raw,
|
||||||
reduce_scatter_raw,
|
reduce_scatter_raw,
|
||||||
)
|
)
|
||||||
from torch import Tensor
|
from torch import Tensor
|
||||||
from torch.cuda.amp import custom_bwd
|
from torch.cuda.amp import custom_bwd, custom_fwd
|
||||||
from torch.distributed import ProcessGroup
|
from torch.distributed import ProcessGroup
|
||||||
|
|
||||||
|
import fused_dense_lib as fused_dense_cuda
|
||||||
|
|
||||||
from internlm.core.context import global_context as gpc
|
from internlm.core.context import global_context as gpc
|
||||||
from internlm.utils.logger import get_logger
|
from internlm.utils.logger import get_logger
|
||||||
|
|
||||||
|
@ -94,6 +96,109 @@ def linear_bias_wgrad_torch(my_input, grad_output, has_d_bias):
|
||||||
grad_bias = grad_output.sum(dim=0) if has_d_bias else None
|
grad_bias = grad_output.sum(dim=0) if has_d_bias else None
|
||||||
return grad_weight, grad_bias
|
return grad_weight, grad_bias
|
||||||
|
|
||||||
|
def all_gather_raw(input_: Tensor, process_group: ProcessGroup, async_op: bool = False, gather_dim: int = 0):
|
||||||
|
world_size = torch.distributed.get_world_size(process_group)
|
||||||
|
shape = list(input_.shape)
|
||||||
|
shape[gather_dim] = shape[gather_dim] * world_size
|
||||||
|
# output = torch.empty(world_size * input_.shape[0], *input_.shape[1:],
|
||||||
|
# dtype=input_.dtype, device=input_.device)
|
||||||
|
output = torch.empty(shape, dtype=input_.dtype, device=input_.device)
|
||||||
|
handle = torch.distributed.all_gather_into_tensor(output, input_.contiguous(),
|
||||||
|
group=process_group, async_op=async_op)
|
||||||
|
return output, handle
|
||||||
|
|
||||||
|
class FusedDenseFunc(torch.autograd.Function):
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
@custom_fwd
|
||||||
|
def forward(ctx, x, weight, bias, return_residual=False, process_group=None,
|
||||||
|
sequence_parallel=True, gather_dim=0):
|
||||||
|
"""
|
||||||
|
If process_group is not None and sequence_parallel=True, we're doing Tensor Parallel
|
||||||
|
with sequence parallelism: we do an all_gather_raw of x before doing the matmul.
|
||||||
|
"""
|
||||||
|
ctx.compute_weight_gradient = weight.requires_grad
|
||||||
|
ctx.return_residual = return_residual
|
||||||
|
ctx.process_group = process_group
|
||||||
|
ctx.sequence_parallel = sequence_parallel
|
||||||
|
ctx.gather_dim = gather_dim
|
||||||
|
|
||||||
|
if torch.is_autocast_enabled():
|
||||||
|
x = x.to(dtype=torch.get_autocast_gpu_dtype())
|
||||||
|
x = x.contiguous()
|
||||||
|
if process_group is not None and sequence_parallel:
|
||||||
|
# We want to kick off the all_gather early, before weight dtype conversion
|
||||||
|
total_x, handle_x = all_gather_raw(x, process_group, async_op=True, gather_dim=gather_dim)
|
||||||
|
else:
|
||||||
|
total_x = x
|
||||||
|
|
||||||
|
if torch.is_autocast_enabled():
|
||||||
|
weight = weight.to(dtype=torch.get_autocast_gpu_dtype())
|
||||||
|
bias = bias.to(dtype=torch.get_autocast_gpu_dtype()) if bias is not None else None
|
||||||
|
weight = weight.contiguous()
|
||||||
|
if process_group is not None and sequence_parallel:
|
||||||
|
handle_x.wait()
|
||||||
|
batch_shape, n = total_x.shape[:-1], total_x.shape[-1]
|
||||||
|
batch_dim = batch_shape.numel()
|
||||||
|
# https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174
|
||||||
|
if min(batch_dim, n, *weight.shape) > 65535 * 32:
|
||||||
|
raise RuntimeError('fused_dense only supports matrix dims <= 2M')
|
||||||
|
output = F.linear(total_x, weight, bias)
|
||||||
|
if ctx.compute_weight_gradient:
|
||||||
|
ctx.save_for_backward(x, weight)
|
||||||
|
else:
|
||||||
|
ctx.save_for_backward(weight)
|
||||||
|
return output if not return_residual else (output, x)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
@custom_bwd
|
||||||
|
def backward(ctx, grad_output, *args):
|
||||||
|
grad_output = grad_output.contiguous()
|
||||||
|
if ctx.return_residual:
|
||||||
|
grad_input, = args
|
||||||
|
grad_input = grad_input.contiguous()
|
||||||
|
process_group = ctx.process_group
|
||||||
|
sequence_parallel = ctx.sequence_parallel
|
||||||
|
gather_dim = ctx.gather_dim
|
||||||
|
|
||||||
|
if ctx.compute_weight_gradient:
|
||||||
|
x, weight = ctx.saved_tensors
|
||||||
|
if process_group is not None and sequence_parallel:
|
||||||
|
total_x, handle_x = all_gather_raw(x, process_group, async_op=True, gather_dim=gather_dim)
|
||||||
|
else:
|
||||||
|
total_x = x
|
||||||
|
else:
|
||||||
|
weight, = ctx.saved_tensors
|
||||||
|
total_x = None
|
||||||
|
batch_shape = grad_output.shape[:-1]
|
||||||
|
batch_dim = batch_shape.numel()
|
||||||
|
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
|
||||||
|
if ctx.needs_input_grad[0]:
|
||||||
|
if not ctx.return_residual:
|
||||||
|
grad_input = F.linear(grad_output, weight.t())
|
||||||
|
else:
|
||||||
|
grad_input = torch.addmm(grad_input.reshape(batch_dim, grad_input.shape[-1]),
|
||||||
|
grad_output, weight)
|
||||||
|
grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1])
|
||||||
|
if process_group is not None:
|
||||||
|
reduce_fn = reduce_scatter_raw if sequence_parallel else all_reduce_raw
|
||||||
|
grad_input, handle_grad_input = reduce_fn(grad_input, process_group, async_op=True)
|
||||||
|
else:
|
||||||
|
grad_input = None
|
||||||
|
if ctx.needs_input_grad[1]:
|
||||||
|
assert ctx.compute_weight_gradient
|
||||||
|
if process_group is not None and sequence_parallel:
|
||||||
|
handle_x.wait()
|
||||||
|
grad_weight, grad_bias = fused_dense_cuda.linear_bias_wgrad(
|
||||||
|
total_x.reshape(batch_dim, total_x.shape[-1]), grad_output, ctx.needs_input_grad[2]
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
grad_weight = None
|
||||||
|
grad_bias = grad_output if ctx.needs_input_grad[2] else None
|
||||||
|
if process_group is not None and ctx.needs_input_grad[0]:
|
||||||
|
handle_grad_input.wait()
|
||||||
|
return grad_input, grad_weight, grad_bias, None, None, None, None
|
||||||
|
|
||||||
|
|
||||||
# adpated from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/ops/fused_dense.py
|
# adpated from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/ops/fused_dense.py
|
||||||
class FusedDenseFuncTorch(FusedDenseFunc):
|
class FusedDenseFuncTorch(FusedDenseFunc):
|
||||||
|
@ -108,10 +213,11 @@ class FusedDenseFuncTorch(FusedDenseFunc):
|
||||||
grad_input = grad_input.contiguous()
|
grad_input = grad_input.contiguous()
|
||||||
process_group = ctx.process_group
|
process_group = ctx.process_group
|
||||||
sequence_parallel = ctx.sequence_parallel
|
sequence_parallel = ctx.sequence_parallel
|
||||||
|
gather_dim = ctx.gather_dim
|
||||||
if ctx.compute_weight_gradient:
|
if ctx.compute_weight_gradient:
|
||||||
x, weight = ctx.saved_tensors
|
x, weight = ctx.saved_tensors
|
||||||
if process_group is not None and sequence_parallel:
|
if process_group is not None and sequence_parallel:
|
||||||
total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
|
total_x, handle_x = all_gather_raw(x, process_group, async_op=True, gather_dim=gather_dim)
|
||||||
else:
|
else:
|
||||||
total_x = x
|
total_x = x
|
||||||
else:
|
else:
|
||||||
|
@ -144,7 +250,7 @@ class FusedDenseFuncTorch(FusedDenseFunc):
|
||||||
grad_bias = grad_output if ctx.needs_input_grad[2] else None
|
grad_bias = grad_output if ctx.needs_input_grad[2] else None
|
||||||
if process_group is not None and ctx.needs_input_grad[0]:
|
if process_group is not None and ctx.needs_input_grad[0]:
|
||||||
handle_grad_input.wait()
|
handle_grad_input.wait()
|
||||||
return grad_input, grad_weight, grad_bias, None, None, None
|
return grad_input, grad_weight, grad_bias, None, None, None, None
|
||||||
|
|
||||||
|
|
||||||
def fused_dense_func_torch(
|
def fused_dense_func_torch(
|
||||||
|
@ -154,14 +260,15 @@ def fused_dense_func_torch(
|
||||||
return_residual: bool = False,
|
return_residual: bool = False,
|
||||||
process_group: Optional[ProcessGroup] = None,
|
process_group: Optional[ProcessGroup] = None,
|
||||||
sequence_parallel: bool = True,
|
sequence_parallel: bool = True,
|
||||||
|
gather_dim: int = 0,
|
||||||
):
|
):
|
||||||
dtype_eligible = x.dtype in [torch.float16, torch.bfloat16] or (
|
dtype_eligible = x.dtype in [torch.float16, torch.bfloat16] or (
|
||||||
x.dtype == torch.float32 and torch.is_autocast_enabled()
|
x.dtype == torch.float32 and torch.is_autocast_enabled()
|
||||||
)
|
)
|
||||||
if x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and dtype_eligible:
|
if x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and dtype_eligible:
|
||||||
return FusedDenseFunc.apply(x, weight, bias, return_residual, process_group, sequence_parallel)
|
return FusedDenseFunc.apply(x, weight, bias, return_residual, process_group, sequence_parallel, gather_dim)
|
||||||
else:
|
else:
|
||||||
return FusedDenseFuncTorch.apply(x, weight, bias, return_residual, process_group, sequence_parallel)
|
return FusedDenseFuncTorch.apply(x, weight, bias, return_residual, process_group, sequence_parallel, gather_dim)
|
||||||
|
|
||||||
|
|
||||||
class _SplitForwardGatherBackward(torch.autograd.Function):
|
class _SplitForwardGatherBackward(torch.autograd.Function):
|
||||||
|
|
Loading…
Reference in New Issue