mirror of https://github.com/InternLM/InternLM
				
				
				
			
		
			
				
	
	
		
			174 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			174 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
	
| JOB_NAME = "7b_train"
 | ||
| DO_ALERT = False
 | ||
| 
 | ||
| SEQ_LEN = 2048
 | ||
| HIDDEN_SIZE = 4096
 | ||
| NUM_ATTENTION_HEAD = 32
 | ||
| MLP_RATIO = 8 / 3
 | ||
| NUM_LAYER = 32
 | ||
| VOCAB_SIZE = 103168
 | ||
| 
 | ||
| MODEL_ONLY_FOLDER = "local:llm_ckpts/xxxx"
 | ||
| # Ckpt folder format:
 | ||
| # fs: 'local:/mnt/nfs/XXX'
 | ||
| SAVE_CKPT_FOLDER = "local:llm_ckpts"
 | ||
| LOAD_CKPT_FOLDER = "local:llm_ckpts/49"
 | ||
| 
 | ||
| # boto3 Ckpt folder format:
 | ||
| # import os
 | ||
| # BOTO3_IP = os.environ["BOTO3_IP"] # boto3 bucket endpoint
 | ||
| # SAVE_CKPT_FOLDER = f"boto3:s3://model_weights.{BOTO3_IP}/internlm"
 | ||
| # LOAD_CKPT_FOLDER = f"boto3:s3://model_weights.{BOTO3_IP}/internlm/snapshot/1/"
 | ||
| CHECKPOINT_EVERY = 50
 | ||
| ckpt = dict(
 | ||
|     enable_save_ckpt=False,  # enable ckpt save.
 | ||
|     save_ckpt_folder=SAVE_CKPT_FOLDER,  # Path to save training ckpt.
 | ||
|     # load_ckpt_folder= dict(path=MODEL_ONLY_FOLDER, content=["model"], ckpt_type="normal"),
 | ||
|     load_ckpt_folder="local:llm_ckpts/",
 | ||
|     # 'load_ckpt_info' setting guide:
 | ||
|     # 1. the 'path' indicate ckpt path,
 | ||
|     # 2. the 'content‘ means what states will be loaded, support: "model", "sampler", "optimizer", "scheduler", "all"
 | ||
|     # 3. the ’ckpt_type‘ means the type of checkpoint to be loaded, now only 'normal' type is supported.
 | ||
|     load_ckpt_info=dict(path=MODEL_ONLY_FOLDER, content=("model",), ckpt_type="internlm"),
 | ||
|     # 'auto_resume' is designed to automatically load the latest checkpoint from 'save_ckpt_folder' when encountering
 | ||
|     # training interruptions/hangs caused by hardware failures, using a scheduling system (such as k8s/slurm)
 | ||
|     # with an automatic restart mechanism upon training reboot.
 | ||
|     # Please be aware that if `auto_resume` is not set (its default value is True), it will not load the checkpoint
 | ||
|     # path specified in `load_ckpt_info` by default.
 | ||
|     # If you want to initialize your model weights from another model, you must set `auto_resume` to False.
 | ||
|     # If you want to train from scratch, please set `auto_resume` to False and 'load_ckpt_info' to None.
 | ||
|     auto_resume=True,
 | ||
|     checkpoint_every=CHECKPOINT_EVERY,
 | ||
|     async_upload=True,  # async ckpt upload. (only work for boto3 ckpt)
 | ||
|     async_upload_tmp_folder="/dev/shm/internlm_tmp_ckpt/",  # path for temporarily files during asynchronous upload.
 | ||
|     oss_snapshot_freq=int(CHECKPOINT_EVERY / 2),  # snapshot ckpt save frequency.
 | ||
| )
 | ||
| 
 | ||
| TRAIN_FOLDER = "/path/to/dataset"
 | ||
| VALID_FOLDER = "/path/to/dataset"
 | ||
| data = dict(
 | ||
|     seq_len=SEQ_LEN,
 | ||
|     # micro_num means the number of micro_batch contained in one gradient update
 | ||
|     micro_num=4,
 | ||
|     # packed_length = micro_bsz * SEQ_LEN
 | ||
|     micro_bsz=2,
 | ||
|     # defaults to the value of micro_num
 | ||
|     valid_micro_num=4,
 | ||
|     # defaults to 0, means disable evaluate
 | ||
|     valid_every=10,
 | ||
|     pack_sample_into_one=False,
 | ||
|     total_steps=50000,
 | ||
|     skip_batches="",
 | ||
|     rampup_batch_size="",
 | ||
|     # Datasets with less than 50 rows will be discarded
 | ||
|     min_length=50,
 | ||
|     # train_folder=TRAIN_FOLDER,
 | ||
|     # valid_folder=VALID_FOLDER,
 | ||
|     empty_cache_and_diag_interval=100,
 | ||
|     diag_outlier_ratio=1.1,
 | ||
| )
 | ||
| 
 | ||
| grad_scaler = dict(
 | ||
|     fp16=dict(
 | ||
|         # the initial loss scale, defaults to 2**16
 | ||
|         initial_scale=2**16,
 | ||
|         # the minimum loss scale, defaults to None
 | ||
|         min_scale=1,
 | ||
|         # the number of steps to increase loss scale when no overflow occurs
 | ||
|         growth_interval=1000,
 | ||
|     ),
 | ||
|     # the multiplication factor for increasing loss scale, defaults to 2
 | ||
|     growth_factor=2,
 | ||
|     # the multiplication factor for decreasing loss scale, defaults to 0.5
 | ||
|     backoff_factor=0.5,
 | ||
|     # the maximum loss scale, defaults to None
 | ||
|     max_scale=2**24,
 | ||
|     # the number of overflows before decreasing loss scale, defaults to 2
 | ||
|     hysteresis=2,
 | ||
| )
 | ||
| 
 | ||
| hybrid_zero_optimizer = dict(
 | ||
|     # Enable low_level_optimzer overlap_communication
 | ||
|     overlap_sync_grad=True,
 | ||
|     overlap_sync_param=True,
 | ||
|     # bucket size for nccl communication params
 | ||
|     reduce_bucket_size=512 * 1024 * 1024,
 | ||
|     # grad clipping
 | ||
|     clip_grad_norm=1.0,
 | ||
| )
 | ||
| 
 | ||
| loss = dict(
 | ||
|     label_smoothing=0,
 | ||
| )
 | ||
| 
 | ||
| adam = dict(
 | ||
|     lr=1e-4,
 | ||
|     adam_beta1=0.9,
 | ||
|     adam_beta2=0.95,
 | ||
|     adam_beta2_c=0,
 | ||
|     adam_eps=1e-8,
 | ||
|     weight_decay=0.01,
 | ||
| )
 | ||
| 
 | ||
| lr_scheduler = dict(
 | ||
|     total_steps=data["total_steps"],
 | ||
|     init_steps=0,  # optimizer_warmup_step
 | ||
|     warmup_ratio=0.01,
 | ||
|     eta_min=1e-5,
 | ||
|     last_epoch=-1,
 | ||
| )
 | ||
| 
 | ||
| beta2_scheduler = dict(
 | ||
|     init_beta2=adam["adam_beta2"],
 | ||
|     c=adam["adam_beta2_c"],
 | ||
|     cur_iter=-1,
 | ||
| )
 | ||
| 
 | ||
| model = dict(
 | ||
|     checkpoint=False,  # The proportion of layers for activation aheckpointing, the optional value are True/False/[0-1]
 | ||
|     num_attention_heads=NUM_ATTENTION_HEAD,
 | ||
|     embed_split_hidden=True,
 | ||
|     vocab_size=VOCAB_SIZE,
 | ||
|     embed_grad_scale=1,
 | ||
|     parallel_output=True,
 | ||
|     hidden_size=HIDDEN_SIZE,
 | ||
|     num_layers=NUM_LAYER,
 | ||
|     mlp_ratio=MLP_RATIO,
 | ||
|     apply_post_layer_norm=False,
 | ||
|     dtype="torch.float16",  # Support: "torch.float16", "torch.half", "torch.bfloat16", "torch.float32", "torch.tf32"
 | ||
|     norm_type="rmsnorm",
 | ||
|     layer_norm_epsilon=1e-5,
 | ||
|     use_flash_attn=True,
 | ||
|     num_chunks=1,  # if num_chunks > 1, interleaved pipeline scheduler is used.
 | ||
| )
 | ||
| """
 | ||
| zero1 parallel:
 | ||
|     1. if zero1 <= 0, The size of the zero process group is equal to the size of the dp process group,
 | ||
|         so parameters will be divided within the range of dp.
 | ||
|     2. if zero1 == 1, zero is not used, and all dp groups retain the full amount of model parameters.
 | ||
|     3. zero1 > 1 and zero1 <= dp world size, the world size of zero is a subset of dp world size.
 | ||
|         For smaller models, it is usually a better choice to split the parameters within nodes with a setting <= 8.
 | ||
| pipeline parallel (dict):
 | ||
|     1. size: int, the size of pipeline parallel.
 | ||
|     2. interleaved_overlap: bool, enable/disable communication overlap when using interleaved pipeline scheduler.
 | ||
| tensor parallel: tensor parallel size, usually the number of GPUs per node.
 | ||
| """
 | ||
| parallel = dict(
 | ||
|     zero1=-1,
 | ||
|     tensor=dict(size=2, mode='origin_tp'), # the mode should be 'origin_tp' or 'fstp'
 | ||
|     pipeline=dict(size=1, interleaved_overlap=True),
 | ||
|     sequence_parallel=True,
 | ||
| )
 | ||
| 
 | ||
| cudnn_deterministic = False
 | ||
| cudnn_benchmark = False
 | ||
| 
 | ||
| monitor = dict(
 | ||
|     # feishu alert configs
 | ||
|     alert=dict(
 | ||
|         enable_feishu_alert=DO_ALERT,
 | ||
|         feishu_alert_address=None,  # feishu webhook to send alert message
 | ||
|         light_monitor_address=None,  # light_monitor address to send heartbeat
 | ||
|     ),
 | ||
| )
 |