mirror of https://github.com/InternLM/InternLM
support optimized sp
parent
c8242572f2
commit
10aa63f0e1
|
@ -146,10 +146,10 @@ pipeline parallel (dict):
|
|||
tensor parallel: tensor parallel size, usually the number of GPUs per node.
|
||||
"""
|
||||
parallel = dict(
|
||||
zero1=8,
|
||||
tensor=1,
|
||||
zero1=-1,
|
||||
tensor=2,
|
||||
pipeline=dict(size=1, interleaved_overlap=True),
|
||||
sequence_parallel=False,
|
||||
sequence_parallel=True,
|
||||
)
|
||||
|
||||
cudnn_deterministic = False
|
||||
|
|
|
@ -5,13 +5,32 @@ from typing import Optional
|
|||
|
||||
import torch
|
||||
from flash_attn.ops.fused_dense import ColumnParallelLinear, RowParallelLinear
|
||||
from flash_attn.utils.distributed import all_reduce, reduce_scatter
|
||||
from flash_attn.utils.distributed import all_reduce, reduce_scatter, all_gather_raw, reduce_scatter_raw
|
||||
from torch import Tensor
|
||||
from torch import nn
|
||||
from torch.cuda.amp import custom_bwd, custom_fwd
|
||||
|
||||
from internlm.core.context import ParallelMode
|
||||
from internlm.core.context import global_context as gpc
|
||||
from internlm.model.utils import Silu, fused_dense_func_torch
|
||||
|
||||
from typing import Optional
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch import Tensor
|
||||
from torch.distributed import ProcessGroup
|
||||
from torch.cuda.amp import custom_bwd, custom_fwd
|
||||
|
||||
# import fused_dense_cuda # from apex
|
||||
import fused_dense_lib as fused_dense_cuda
|
||||
|
||||
from flash_attn.ops.activations import gelu_bwd, relu_bwd, sqrelu_fwd, sqrelu_bwd
|
||||
from flash_attn.utils.distributed import all_gather_raw, reduce_scatter_raw, all_reduce_raw
|
||||
from flash_attn.utils.distributed import reduce_scatter, all_reduce
|
||||
|
||||
|
||||
class ScaleColumnParallelLinear(nn.Linear):
|
||||
"""
|
||||
|
@ -200,3 +219,201 @@ class FeedForward(nn.Module):
|
|||
w2_o = self.w2(x)
|
||||
out = self.w3(Silu(w1_o, w2_o))
|
||||
return out
|
||||
|
||||
class FusedDenseFunc_fsdp(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
@custom_fwd
|
||||
def forward(ctx, x, weight, bias, return_residual=False, process_group=None):
|
||||
|
||||
ctx.compute_weight_gradient = weight.requires_grad
|
||||
ctx.return_residual = return_residual
|
||||
ctx.process_group = process_group
|
||||
|
||||
if torch.is_autocast_enabled():
|
||||
x = x.to(dtype=torch.get_autocast_gpu_dtype())
|
||||
x = x.contiguous()
|
||||
total_x = x
|
||||
|
||||
# do all_gather for weight and bias before actual computation
|
||||
total_weight, handle_weight = all_gather_raw(weight, process_group, async_op=True)
|
||||
if bias is not None:
|
||||
total_bias, handle_bias = all_gather_raw(bias, process_group, async_op=True)
|
||||
handle_bias.wait()
|
||||
else:
|
||||
total_bias = bias
|
||||
|
||||
if torch.is_autocast_enabled():
|
||||
total_weight = total_weight.to(dtype=torch.get_autocast_gpu_dtype())
|
||||
total_bias = total_bias.to(dtype=torch.get_autocast_gpu_dtype()) if bias is not None else None
|
||||
handle_weight.wait()
|
||||
total_weight = total_weight.contiguous()
|
||||
batch_shape, n = total_x.shape[:-1], total_x.shape[-1]
|
||||
batch_dim = batch_shape.numel()
|
||||
# https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174
|
||||
if min(batch_dim, n, *total_weight.shape) > 65535 * 32:
|
||||
raise RuntimeError('fused_dense only supports matrix dims <= 2M')
|
||||
output = F.linear(total_x, total_weight, total_bias)
|
||||
if ctx.compute_weight_gradient:
|
||||
ctx.save_for_backward(x, weight)
|
||||
else:
|
||||
ctx.save_for_backward(weight)
|
||||
return output if not return_residual else (output, x)
|
||||
|
||||
@staticmethod
|
||||
@custom_bwd
|
||||
def backward(ctx, grad_output, *args):
|
||||
grad_output = grad_output.contiguous()
|
||||
if ctx.return_residual:
|
||||
grad_input, = args
|
||||
grad_input = grad_input.contiguous()
|
||||
process_group = ctx.process_group
|
||||
if ctx.compute_weight_gradient:
|
||||
x, weight = ctx.saved_tensors
|
||||
total_x = x
|
||||
else:
|
||||
weight, = ctx.saved_tensors
|
||||
total_x = None
|
||||
batch_shape = grad_output.shape[:-1]
|
||||
batch_dim = batch_shape.numel()
|
||||
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
|
||||
|
||||
# do all-gather for weight before backward
|
||||
weight, handle_weight = all_gather_raw(weight, process_group, async_op=True)
|
||||
handle_weight.wait()
|
||||
|
||||
if ctx.needs_input_grad[0]:
|
||||
if not ctx.return_residual:
|
||||
grad_input = F.linear(grad_output, weight.t())
|
||||
else:
|
||||
grad_input = torch.addmm(grad_input.reshape(batch_dim, grad_input.shape[-1]),
|
||||
grad_output, weight)
|
||||
grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1])
|
||||
# if process_group is not None:
|
||||
# import pdb; pdb.set_trace()
|
||||
# grad_input, handle_grad_input = reduce_scatter_raw(grad_input, process_group, async_op=True)
|
||||
# grad_input, handle_grad_input = all_reduce_raw(grad_input, process_group, async_op=True)
|
||||
|
||||
else:
|
||||
grad_input = None
|
||||
# import pdb; pdb.set_trace()
|
||||
if ctx.needs_input_grad[1]:
|
||||
assert ctx.compute_weight_gradient
|
||||
|
||||
grad_weight, grad_bias = fused_dense_cuda.linear_bias_wgrad(
|
||||
total_x.reshape(batch_dim, total_x.shape[-1]), grad_output, ctx.needs_input_grad[2]
|
||||
)
|
||||
grad_weight, handle_grad_weight = reduce_scatter_raw(grad_weight, process_group, async_op=True)
|
||||
if grad_bias is not None:
|
||||
grad_bias, handle_grad_bias = reduce_scatter_raw(grad_bias, process_group, async_op=True)
|
||||
handle_grad_bias.wait()
|
||||
handle_grad_weight.wait()
|
||||
|
||||
else:
|
||||
grad_weight = None
|
||||
grad_bias = grad_output if ctx.needs_input_grad[2] else None
|
||||
# if process_group is not None and ctx.needs_input_grad[0]:
|
||||
# handle_grad_input.wait()
|
||||
# import pdb; pdb.set_trace()
|
||||
return grad_input, grad_weight, grad_bias, None, None, None
|
||||
|
||||
|
||||
def fsdp_fused_dense_func(x: Tensor, weight: Tensor, bias: Optional[Tensor] = None,
|
||||
return_residual: bool = False, process_group = None):
|
||||
dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16]
|
||||
or (x.dtype == torch.float32 and torch.is_autocast_enabled()))
|
||||
if x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and dtype_eligible:
|
||||
return FusedDenseFunc_fsdp.apply(x, weight, bias, return_residual, process_group)
|
||||
else:
|
||||
assert process_group is None
|
||||
out = F.linear(x, weight, bias)
|
||||
return out if not return_residual else (out, x)
|
||||
|
||||
class FSDPLinear(ColumnParallelLinear):
|
||||
|
||||
def forward(self, x):
|
||||
return fsdp_fused_dense_func(x, self.weight, self.bias, process_group=self.process_group)
|
||||
|
||||
|
||||
class FSDPScaleLinear(ScaleColumnParallelLinear):
|
||||
|
||||
def forward(self, input): # pylint: disable=W0622
|
||||
# If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
|
||||
# we do an all_gather of x before doing the matmul.
|
||||
# If not, then the input is already gathered.
|
||||
if self.weight_scale != 1:
|
||||
weight = self.weight * self.weight_scale + (1 - self.weight_scale) * self.weight.detach()
|
||||
else:
|
||||
weight = self.weight
|
||||
return fsdp_fused_dense_func(
|
||||
input,
|
||||
weight,
|
||||
self.bias,
|
||||
process_group=self.process_group,
|
||||
)
|
||||
|
||||
|
||||
class FSDPFeedForward(nn.Module):
|
||||
"""
|
||||
FeedForward.
|
||||
|
||||
Args:
|
||||
in_features (int): size of each input sample
|
||||
hidden_features (int): size of hidden state of FFN
|
||||
out_features (int): size of each output sample
|
||||
process_group (Optional[torch.distributed.ProcessGroup]): The group of the current device for `parallel_mode`.
|
||||
bias (bool): Whether the bias is needed for linears. True by default. But it is typically set to False
|
||||
in the config.
|
||||
device (Optional[Union[str, torch.device]]): The device will be used.
|
||||
dtype (Optional[torch.dtype]): The type of data.
|
||||
multiple_of (int): For efficient training. Reset the size of hidden feature. 256 by default.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
hidden_features: int,
|
||||
out_features: int = None,
|
||||
process_group: Optional[torch.distributed.ProcessGroup] = None,
|
||||
bias: bool = True,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
multiple_of: int = 256,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
hidden_features = multiple_of * ((hidden_features + multiple_of - 1) // multiple_of)
|
||||
|
||||
self.w1 = FSDPLinear(
|
||||
in_features,
|
||||
hidden_features,
|
||||
process_group,
|
||||
bias,
|
||||
sequence_parallel=gpc.config.parallel.sequence_parallel,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
self.w2 = FSDPLinear(
|
||||
in_features,
|
||||
hidden_features,
|
||||
process_group,
|
||||
bias,
|
||||
sequence_parallel=gpc.config.parallel.sequence_parallel,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
self.w3 = FSDPLinear(
|
||||
hidden_features,
|
||||
out_features,
|
||||
process_group,
|
||||
bias=bias,
|
||||
sequence_parallel=gpc.config.parallel.sequence_parallel,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
w1_o = self.w1(x)
|
||||
w2_o = self.w2(x)
|
||||
out = self.w3(Silu(w1_o, w2_o))
|
||||
return out
|
||||
|
|
|
@ -17,9 +17,11 @@ from internlm.model.linear import (
|
|||
FeedForward,
|
||||
RewardModelLinear,
|
||||
ScaleColumnParallelLinear,
|
||||
FSDPScaleLinear,
|
||||
FSDPFeedForward,
|
||||
)
|
||||
from internlm.model.multi_head_attention import MHA
|
||||
from internlm.model.utils import gather_forward_split_backward, try_import_RMSNorm
|
||||
from internlm.model.utils import gather_forward_split_backward, try_import_RMSNorm, split_forward_gather_backward
|
||||
from internlm.solver.pipeline_utils import partition_uniform
|
||||
from internlm.utils.checkpoint import activation_checkpoint
|
||||
from internlm.utils.common import filter_kwargs
|
||||
|
@ -107,7 +109,16 @@ class PackedFlashBaseLayer1D(nn.Module):
|
|||
self.norm2 = nn.LayerNorm(hidden_size, eps=layer_norm_epsilon)
|
||||
|
||||
if use_swiglu:
|
||||
self.mlp = FeedForward(
|
||||
# self.mlp = FeedForward(
|
||||
# hidden_size,
|
||||
# int(hidden_size * mlp_ratio),
|
||||
# out_features=hidden_size,
|
||||
# process_group=gpc.get_group(ParallelMode.TENSOR),
|
||||
# bias=False,
|
||||
# device=device,
|
||||
# dtype=dtype,
|
||||
# )
|
||||
self.mlp = FSDPFeedForward(
|
||||
hidden_size,
|
||||
int(hidden_size * mlp_ratio),
|
||||
out_features=hidden_size,
|
||||
|
@ -293,7 +304,8 @@ class PackedFlashInternLm1D(nn.Module):
|
|||
if is_reward:
|
||||
head_cls = RewardModelLinear
|
||||
else:
|
||||
head_cls = ScaleColumnParallelLinear
|
||||
# head_cls = ScaleColumnParallelLinear
|
||||
head_cls = FSDPScaleLinear
|
||||
if first:
|
||||
if embed_split_hidden:
|
||||
self.embedding = Embedding1D(num_embeddings=vocab_size, embedding_dim=hidden_size)
|
||||
|
@ -379,6 +391,9 @@ class PackedFlashInternLm1D(nn.Module):
|
|||
assert len(indexes) == 1
|
||||
# The indexes are used to indicate the actual position IDs of each token in the packed input.
|
||||
indexes = indexes[0]
|
||||
if gpc.config.parallel.sequence_parallel:
|
||||
indexes = split_forward_gather_backward(indexes, ParallelMode.TENSOR, dim=0)
|
||||
|
||||
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() if cu_seqlens is not None else None
|
||||
|
||||
for _, block in enumerate(self.blocks):
|
||||
|
@ -394,6 +409,7 @@ class PackedFlashInternLm1D(nn.Module):
|
|||
hidden_states = self.norm(hidden_states.float())
|
||||
if hasattr(self, "head"):
|
||||
hidden_states = self.head(hidden_states)
|
||||
hidden_states = gather_forward_split_backward(hidden_states, ParallelMode.TENSOR, dim=0)
|
||||
|
||||
if not self.parallel_output:
|
||||
hidden_states = gather_forward_split_backward(hidden_states, ParallelMode.TENSOR, dim=-1)
|
||||
|
|
|
@ -18,7 +18,114 @@ from torch import nn
|
|||
from internlm.core.context import IS_TENSOR_PARALLEL, ParallelMode
|
||||
from internlm.core.context import global_context as gpc
|
||||
from internlm.model.embedding import DynamicNTKScalingRotaryEmbedding, RotaryEmbedding
|
||||
from internlm.model.linear import ColumnParallelLinearTorch, RowParallelLinearTorch
|
||||
from internlm.model.linear import ColumnParallelLinearTorch, RowParallelLinearTorch, FSDPLinear
|
||||
|
||||
import torch
|
||||
|
||||
from typing import Any, Tuple
|
||||
from torch import Tensor
|
||||
from torch.nn import Module
|
||||
|
||||
import torch.distributed as dist
|
||||
|
||||
|
||||
class _SeqAllToAll(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx: Any, group: dist.ProcessGroup, input: Tensor, scatter_idx: int, gather_idx: int) -> Tensor:
|
||||
|
||||
ctx.group = group
|
||||
ctx.scatter_idx = scatter_idx
|
||||
ctx.gather_idx = gather_idx
|
||||
|
||||
seq_world_size = dist.get_world_size(group)
|
||||
|
||||
input_list = [t.contiguous() for t in torch.tensor_split(input, seq_world_size, scatter_idx)]
|
||||
output_list = [torch.empty_like(input_list[0]) for _ in range(seq_world_size)]
|
||||
# TODO Use all_to_all_single instead
|
||||
dist.all_to_all(output_list, input_list, group=group)
|
||||
return torch.cat(output_list, dim=gather_idx).contiguous()
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]:
|
||||
return (None, _SeqAllToAll.apply(ctx.group, *grad_output, ctx.gather_idx, ctx.scatter_idx), None, None)
|
||||
|
||||
|
||||
class DistributedAttention(torch.nn.Module):
|
||||
"""Initialization.
|
||||
|
||||
Arguments:
|
||||
local_attention (Module): local attention with q,k,v
|
||||
sequence_process_group (ProcessGroup): sequence parallel process group
|
||||
scatter_idx (int): scatter_idx for all2all comm
|
||||
gather_idx (int): gather_idx for all2all comm
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
local_attention: Module,
|
||||
sequence_process_group: dist.ProcessGroup,
|
||||
scatter_idx: int = 2,
|
||||
gather_idx: int = 0,
|
||||
) -> None:
|
||||
|
||||
super(DistributedAttention, self).__init__()
|
||||
self.local_attn = local_attention
|
||||
self.spg = sequence_process_group
|
||||
self.scatter_idx = scatter_idx
|
||||
self.gather_idx = gather_idx
|
||||
|
||||
# def forward(self, query: Tensor, key: Tensor, value: Tensor, *args: Any) -> Tensor:
|
||||
# """ forward
|
||||
|
||||
# Arguments:
|
||||
# query (Tensor): query input to the layer
|
||||
# key (Tensor): key input to the layer
|
||||
# value (Tensor): value input to the layer
|
||||
# args: other args
|
||||
|
||||
# Returns:
|
||||
# * output (Tensor): context output
|
||||
# """
|
||||
# # TODO Merge three alltoall calls into one
|
||||
# #in shape : e.g., [s/p:h:]
|
||||
# query_layer = _SeqAllToAll.apply(self.spg, query, self.scatter_idx, self.gather_idx)
|
||||
# key_layer = _SeqAllToAll.apply(self.spg, key, self.scatter_idx, self.gather_idx)
|
||||
# value_layer = _SeqAllToAll.apply(self.spg, value, self.scatter_idx, self.gather_idx)
|
||||
|
||||
# #out shape : e.g., [s:h/p:]
|
||||
# context_layer = self.local_attn(query_layer, key_layer, value_layer, *args)
|
||||
|
||||
# output = _SeqAllToAll.apply(self.spg, context_layer, self.gather_idx, self.scatter_idx)
|
||||
|
||||
# #out e.g., [s/p::h]
|
||||
# return output
|
||||
|
||||
def forward(self, qkv: Tensor, **kwargs: Any) -> Tensor:
|
||||
""" forward
|
||||
|
||||
Arguments:
|
||||
query (Tensor): query input to the layer
|
||||
key (Tensor): key input to the layer
|
||||
value (Tensor): value input to the layer
|
||||
args: other args
|
||||
|
||||
Returns:
|
||||
* output (Tensor): context output
|
||||
"""
|
||||
# TODO Merge three alltoall calls into one
|
||||
#in shape : e.g., [s/p:h:]
|
||||
qkv = _SeqAllToAll.apply(self.spg, qkv, self.scatter_idx, self.gather_idx)
|
||||
# key_layer = _SeqAllToAll.apply(self.spg, key, self.scatter_idx, self.gather_idx)
|
||||
# value_layer = _SeqAllToAll.apply(self.spg, value, self.scatter_idx, self.gather_idx)
|
||||
|
||||
#out shape : e.g., [s:h/p:]
|
||||
context_layer = self.local_attn(qkv, **kwargs)
|
||||
|
||||
output = _SeqAllToAll.apply(self.spg, context_layer, 0, 2)
|
||||
|
||||
#out e.g., [s/p::h]
|
||||
return output
|
||||
|
||||
|
||||
class MHA(nn.Module):
|
||||
|
@ -91,7 +198,16 @@ class MHA(nn.Module):
|
|||
self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, scale_base=rotary_emb_scale_base, device=device)
|
||||
|
||||
# notice here should change bias=True
|
||||
self.Wqkv = ColumnParallelLinearTorch(
|
||||
# self.Wqkv = ColumnParallelLinearTorch(
|
||||
# embed_dim,
|
||||
# 3 * embed_dim,
|
||||
# process_group,
|
||||
# bias=True,
|
||||
# sequence_parallel=gpc.config.parallel.sequence_parallel,
|
||||
# **factory_kwargs,
|
||||
# ) # according to https://spaces.ac.cn/archives/9577
|
||||
|
||||
self.Wqkv = FSDPLinear(
|
||||
embed_dim,
|
||||
3 * embed_dim,
|
||||
process_group,
|
||||
|
@ -107,8 +223,18 @@ class MHA(nn.Module):
|
|||
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
|
||||
)
|
||||
|
||||
self.inner_attn_sp = DistributedAttention(self.inner_attn, sequence_process_group=process_group, scatter_idx=3, gather_idx=0)
|
||||
self.inner_cross_attn_sp = DistributedAttention(self.inner_cross_attn, sequence_process_group=process_group, scatter_idx=3, gather_idx=0)
|
||||
|
||||
# output projection always have the bias (for now)
|
||||
self.out_proj = RowParallelLinearTorch(
|
||||
# self.out_proj = RowParallelLinearTorch(
|
||||
# embed_dim,
|
||||
# embed_dim,
|
||||
# process_group,
|
||||
# sequence_parallel=gpc.config.parallel.sequence_parallel,
|
||||
# **factory_kwargs,
|
||||
# )
|
||||
self.out_proj = FSDPLinear(
|
||||
embed_dim,
|
||||
embed_dim,
|
||||
process_group,
|
||||
|
@ -217,9 +343,11 @@ class MHA(nn.Module):
|
|||
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
||||
if qkv.dtype not in [torch.float16, torch.bfloat16]:
|
||||
qkv = qkv.to(torch.bfloat16)
|
||||
context = self.inner_attn(qkv, **kwargs).to(x.dtype)
|
||||
# context = self.inner_attn(qkv, **kwargs).to(x.dtype)
|
||||
context = self.inner_attn_sp(qkv, **kwargs).to(x.dtype)
|
||||
else:
|
||||
context = self.inner_attn(qkv, **kwargs)
|
||||
# context = self.inner_attn(qkv, **kwargs)
|
||||
context = self.inner_attn_sp(qkv, **kwargs)
|
||||
|
||||
else:
|
||||
raise RuntimeError("Not support this right now")
|
||||
|
|
21
train.py
21
train.py
|
@ -110,7 +110,6 @@ def main(args):
|
|||
|
||||
# initialize and resume train state
|
||||
train_state = TrainState(gpc.config, train_dl.batch_sampler)
|
||||
|
||||
optimizer, beta2_scheduler, lr_scheduler = initialize_optimizer(model=model)
|
||||
|
||||
ckpt_manager = CheckpointManager(
|
||||
|
@ -171,6 +170,7 @@ def main(args):
|
|||
scheduler_hooks=scheduler_hooks,
|
||||
)
|
||||
|
||||
|
||||
# initialize simple memory profiler
|
||||
if args.profiling:
|
||||
memory_profiler = SimpleMemoryProfiler(
|
||||
|
@ -219,21 +219,9 @@ def main(args):
|
|||
# do forward and backward
|
||||
timer("fwd-bwd").start()
|
||||
|
||||
moe_loss = None
|
||||
if hasattr(gpc.config.model, "num_experts"):
|
||||
_, _, loss, moe_loss = trainer.execute_schedule(
|
||||
batch,
|
||||
forward_only=False,
|
||||
return_loss=True,
|
||||
return_output_label=False,
|
||||
)
|
||||
else:
|
||||
_, _, loss = trainer.execute_schedule(
|
||||
batch,
|
||||
forward_only=False,
|
||||
return_loss=True,
|
||||
return_output_label=False,
|
||||
)
|
||||
_, _, loss = trainer.execute_schedule(
|
||||
batch, forward_only=False, return_loss=True, return_output_label=False
|
||||
)
|
||||
timer("fwd-bwd").stop()
|
||||
|
||||
# update parameters, and returns (success_update, grad_norm)
|
||||
|
@ -266,7 +254,6 @@ def main(args):
|
|||
trainer=trainer,
|
||||
start_time=start_time,
|
||||
loss=loss,
|
||||
moe_loss=moe_loss,
|
||||
grad_norm=grad_norm_groups,
|
||||
metric=metric,
|
||||
update_panel=uniscale_logger is not None,
|
||||
|
|
Loading…
Reference in New Issue