mirror of https://github.com/InternLM/InternLM
141 lines
4.8 KiB
Python
141 lines
4.8 KiB
Python
![]() |
import logging
|
||
|
import os
|
||
|
import socket
|
||
|
import sys
|
||
|
import traceback
|
||
|
from functools import partial
|
||
|
|
||
|
import torch
|
||
|
from torch.utils.tensorboard import SummaryWriter
|
||
|
|
||
|
from internlm.core.context import ParallelMode
|
||
|
from internlm.core.context import global_context as gpc
|
||
|
|
||
|
|
||
|
def get_tb_log_file_name():
|
||
|
if gpc.is_rank_for_log():
|
||
|
tb_prefix = "main_" # Indicates a rank with more output information
|
||
|
else:
|
||
|
tb_prefix = ""
|
||
|
|
||
|
tb_log_file_name = (
|
||
|
f"{tb_prefix}dp={gpc.get_local_rank(ParallelMode.DATA)}_"
|
||
|
f"tp={gpc.get_local_rank(ParallelMode.TENSOR)}_pp={gpc.get_local_rank(ParallelMode.PIPELINE)}"
|
||
|
)
|
||
|
return tb_log_file_name
|
||
|
|
||
|
|
||
|
def copy_ignore_folder(source_path, target_path):
|
||
|
os.system(f"cp -r {source_path}/* {target_path}/")
|
||
|
|
||
|
|
||
|
def tb_save_run_info(writer, config_lines, global_step=0):
|
||
|
writer.add_text(tag="cmd", text_string=" ".join(sys.argv[:]), global_step=global_step)
|
||
|
lines = []
|
||
|
for line in config_lines:
|
||
|
if line.strip().startswith("#"):
|
||
|
continue
|
||
|
lines.append(line)
|
||
|
writer.add_text(tag="config", text_string="\n".join(lines), global_step=global_step)
|
||
|
|
||
|
|
||
|
def init_tb_writer(
|
||
|
launch_time,
|
||
|
tensorboard_folder: str,
|
||
|
resume_tb_folder: str,
|
||
|
step_count: int,
|
||
|
config: str,
|
||
|
logger: logging.Logger,
|
||
|
):
|
||
|
tb_log_file_name = get_tb_log_file_name()
|
||
|
if not tensorboard_folder:
|
||
|
tb_folder = os.path.join(gpc.config.JOB_NAME, launch_time)
|
||
|
else:
|
||
|
tb_folder = tensorboard_folder
|
||
|
|
||
|
if gpc.get_global_rank() == 0:
|
||
|
if resume_tb_folder is not None:
|
||
|
logger.info(f"Try mv tensorboard logs: {resume_tb_folder} to {tb_folder}...")
|
||
|
copy_ignore_folder(resume_tb_folder, tb_folder)
|
||
|
else:
|
||
|
logger.info(f"Login tensorboard logs to: {tb_folder}")
|
||
|
|
||
|
tb_logdir = os.path.join(tb_folder, tb_log_file_name)
|
||
|
writer = SummaryWriter(log_dir=tb_logdir, max_queue=5, purge_step=step_count, flush_secs=3)
|
||
|
writer.add_text(tag="job_name", text_string=gpc.config.JOB_NAME, global_step=step_count)
|
||
|
writer.add_text(tag="tensorboard_folder", text_string=tb_logdir, global_step=step_count)
|
||
|
|
||
|
torch.distributed.broadcast_object_list([tb_folder], src=0)
|
||
|
else:
|
||
|
objects = [None]
|
||
|
torch.distributed.broadcast_object_list(objects, src=0)
|
||
|
tb_folder = objects[0]
|
||
|
tb_logdir = os.path.join(tb_folder, tb_log_file_name)
|
||
|
writer = SummaryWriter(log_dir=tb_logdir, max_queue=5, purge_step=step_count, flush_secs=3)
|
||
|
|
||
|
if gpc.is_rank_for_log():
|
||
|
tb_save_run_info(
|
||
|
writer=writer,
|
||
|
config_lines=config,
|
||
|
global_step=step_count,
|
||
|
)
|
||
|
|
||
|
writer.add_text(
|
||
|
tag=f"mapping_{tb_log_file_name}",
|
||
|
text_string=f"file_path={tb_logdir} hostname={socket.gethostname()} device={torch.cuda.current_device()}",
|
||
|
global_step=step_count,
|
||
|
)
|
||
|
writer.add_scaler = partial(writer.add_scalar, new_style=True)
|
||
|
|
||
|
return writer, tb_logdir
|
||
|
|
||
|
|
||
|
class Writer:
|
||
|
"""
|
||
|
Customed writer based on tensorboard for recording training metrics.
|
||
|
|
||
|
Args:
|
||
|
launch_time (str): A string representing the launch time of the training.
|
||
|
tensorboard_folder (str): A string representing the folder for saving tensorboard logs.
|
||
|
resume_tb_folder (str): A string representing the folder for resuming tensorboard logs.
|
||
|
step_count (int): An integer representing the step count of the training.
|
||
|
config (str): A string representing the configuration of the training.
|
||
|
logger (logging.Logger): A logging.Logger object for logging information during training.
|
||
|
enable_tb (bool): A boolean indicating whether to enable the tensorboard writer.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
launch_time: str,
|
||
|
tensorboard_folder: str = None,
|
||
|
resume_tb_folder: str = None,
|
||
|
step_count: int = 0,
|
||
|
config: str = None,
|
||
|
logger: logging.Logger = None,
|
||
|
enable_tb: bool = True,
|
||
|
) -> None:
|
||
|
self.enable_tb = enable_tb
|
||
|
self.tb_writer, self.tb_logdir = init_tb_writer(
|
||
|
launch_time=launch_time,
|
||
|
tensorboard_folder=tensorboard_folder,
|
||
|
resume_tb_folder=resume_tb_folder,
|
||
|
step_count=step_count,
|
||
|
config=config,
|
||
|
logger=logger,
|
||
|
)
|
||
|
|
||
|
def add_scalar(self, key, value, step):
|
||
|
try:
|
||
|
if self.enable_tb and self.tb_writer is not None:
|
||
|
self.tb_writer.add_scalar(tag=key, scalar_value=value, global_step=step)
|
||
|
except Exception:
|
||
|
traceback.print_exc()
|
||
|
|
||
|
def add_text(self, key, value, step):
|
||
|
try:
|
||
|
if self.enable_tb and self.tb_writer is not None:
|
||
|
self.tb_writer.add_text(tag=key, text_string=value, global_step=step)
|
||
|
except Exception:
|
||
|
traceback.print_exc()
|