feat(utils/writer.py): support tensorboard writer (#63)

* feat(utils/writer.py): support tensorboard writer

* feat(utils/writer.py): add class comment

---------

Co-authored-by: 黄婷 <huangting3@CN0014010744M.local>
pull/120/head
huangting4201 2023-07-21 15:53:24 +08:00 committed by GitHub
parent c7287e2584
commit 0d3d27cdf4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 169 additions and 5 deletions

View File

@ -127,6 +127,14 @@ def args_sanity_check():
logger.info(f"save_ckpt_folder: {gpc.config.ckpt.save_ckpt_folder}")
logger.info(f"checkpoint_every: {gpc.config.ckpt.checkpoint_every}")
# tensorboard writer config
if "enable_tb" not in gpc.config:
gpc.config._add_item("enable_tb", True)
if "tensorboard_folder" not in gpc.config:
gpc.config._add_item("tensorboard_folder", None)
if "resume_tb_folder" not in gpc.config:
gpc.config._add_item("resume_tb_folder", None)
# cudnn
torch.backends.cudnn.benchmark = gpc.config.get("cudnn_benchmark", False)
torch.backends.cudnn.deterministic = gpc.config.get("cudnn_deterministic", False)

140
internlm/utils/writer.py Normal file
View File

@ -0,0 +1,140 @@
import logging
import os
import socket
import sys
import traceback
from functools import partial
import torch
from torch.utils.tensorboard import SummaryWriter
from internlm.core.context import ParallelMode
from internlm.core.context import global_context as gpc
def get_tb_log_file_name():
if gpc.is_rank_for_log():
tb_prefix = "main_" # Indicates a rank with more output information
else:
tb_prefix = ""
tb_log_file_name = (
f"{tb_prefix}dp={gpc.get_local_rank(ParallelMode.DATA)}_"
f"tp={gpc.get_local_rank(ParallelMode.TENSOR)}_pp={gpc.get_local_rank(ParallelMode.PIPELINE)}"
)
return tb_log_file_name
def copy_ignore_folder(source_path, target_path):
os.system(f"cp -r {source_path}/* {target_path}/")
def tb_save_run_info(writer, config_lines, global_step=0):
writer.add_text(tag="cmd", text_string=" ".join(sys.argv[:]), global_step=global_step)
lines = []
for line in config_lines:
if line.strip().startswith("#"):
continue
lines.append(line)
writer.add_text(tag="config", text_string="\n".join(lines), global_step=global_step)
def init_tb_writer(
launch_time,
tensorboard_folder: str,
resume_tb_folder: str,
step_count: int,
config: str,
logger: logging.Logger,
):
tb_log_file_name = get_tb_log_file_name()
if not tensorboard_folder:
tb_folder = os.path.join(gpc.config.JOB_NAME, launch_time)
else:
tb_folder = tensorboard_folder
if gpc.get_global_rank() == 0:
if resume_tb_folder is not None:
logger.info(f"Try mv tensorboard logs: {resume_tb_folder} to {tb_folder}...")
copy_ignore_folder(resume_tb_folder, tb_folder)
else:
logger.info(f"Login tensorboard logs to: {tb_folder}")
tb_logdir = os.path.join(tb_folder, tb_log_file_name)
writer = SummaryWriter(log_dir=tb_logdir, max_queue=5, purge_step=step_count, flush_secs=3)
writer.add_text(tag="job_name", text_string=gpc.config.JOB_NAME, global_step=step_count)
writer.add_text(tag="tensorboard_folder", text_string=tb_logdir, global_step=step_count)
torch.distributed.broadcast_object_list([tb_folder], src=0)
else:
objects = [None]
torch.distributed.broadcast_object_list(objects, src=0)
tb_folder = objects[0]
tb_logdir = os.path.join(tb_folder, tb_log_file_name)
writer = SummaryWriter(log_dir=tb_logdir, max_queue=5, purge_step=step_count, flush_secs=3)
if gpc.is_rank_for_log():
tb_save_run_info(
writer=writer,
config_lines=config,
global_step=step_count,
)
writer.add_text(
tag=f"mapping_{tb_log_file_name}",
text_string=f"file_path={tb_logdir} hostname={socket.gethostname()} device={torch.cuda.current_device()}",
global_step=step_count,
)
writer.add_scaler = partial(writer.add_scalar, new_style=True)
return writer, tb_logdir
class Writer:
"""
Customed writer based on tensorboard for recording training metrics.
Args:
launch_time (str): A string representing the launch time of the training.
tensorboard_folder (str): A string representing the folder for saving tensorboard logs.
resume_tb_folder (str): A string representing the folder for resuming tensorboard logs.
step_count (int): An integer representing the step count of the training.
config (str): A string representing the configuration of the training.
logger (logging.Logger): A logging.Logger object for logging information during training.
enable_tb (bool): A boolean indicating whether to enable the tensorboard writer.
"""
def __init__(
self,
launch_time: str,
tensorboard_folder: str = None,
resume_tb_folder: str = None,
step_count: int = 0,
config: str = None,
logger: logging.Logger = None,
enable_tb: bool = True,
) -> None:
self.enable_tb = enable_tb
self.tb_writer, self.tb_logdir = init_tb_writer(
launch_time=launch_time,
tensorboard_folder=tensorboard_folder,
resume_tb_folder=resume_tb_folder,
step_count=step_count,
config=config,
logger=logger,
)
def add_scalar(self, key, value, step):
try:
if self.enable_tb and self.tb_writer is not None:
self.tb_writer.add_scalar(tag=key, scalar_value=value, global_step=step)
except Exception:
traceback.print_exc()
def add_text(self, key, value, step):
try:
if self.enable_tb and self.tb_writer is not None:
self.tb_writer.add_text(tag=key, text_string=value, global_step=step)
except Exception:
traceback.print_exc()

View File

@ -54,6 +54,7 @@ from internlm.utils.parallel import (
sync_model_param_within_tp,
)
from internlm.utils.registry import MODEL_INITIALIZER
from internlm.utils.writer import Writer
# global llm logger
logger = get_logger(__file__)
@ -246,6 +247,7 @@ def initialize_optimizer(model: nn.Module):
def record_current_batch_training_metrics(
get_tflops_func,
logger,
writer,
success_update,
batch_count,
batch,
@ -307,12 +309,13 @@ def record_current_batch_training_metrics(
infos["smallest_batch"] = min_samples_in_batch
infos["adam_beta2"] = beta2_scheduler.get_beta2()
line = ""
for k, v in infos.items():
line += f"{k}={v},"
fwd_bwd_time = round(timer("fwd-bwd").elapsed(), 2)
line += f"fwd_bwd_time={fwd_bwd_time}"
infos["fwd_bwd_time"] = fwd_bwd_time
line = ""
for key, value in infos.items():
line += f"{key}={value},"
writer.add_scalar(key=key, value=value, step=train_state.step_count)
logger.info(line)
@ -355,6 +358,18 @@ def main(args):
dist.broadcast_object_list(objs, src=0)
current_time = objs[0]
# initialize customed llm writer
with open(args.config, "r") as f:
config_lines = f.readlines()
writer = Writer(
launch_time=current_time,
tensorboard_folder=gpc.config.tensorboard_folder,
resume_tb_folder=gpc.config.resume_tb_folder,
config=config_lines,
logger=logger,
enable_tb=gpc.config.enable_tb,
)
model_load_path = None
if load_resume_ckpt_folder is not None:
logger.info(
@ -469,6 +484,7 @@ def main(args):
record_current_batch_training_metrics(
get_tflops_func=get_tflops_func,
logger=logger,
writer=writer,
success_update=success_update,
batch_count=batch_count,
batch=batch,