GitHub-Chinese-Top-Charts/content/charts/overall/knowledge/Jupyter-Notebook.md

117 lines
20 KiB
Java
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

<a href="https://github.com/kon9chunkit/GitHub-Chinese-Top-Charts#github中文排行榜"></a> <a href="/content/docs/feedback.md"></a>
# > > Jupyter Notebook
<sub>: 2021-12-22&nbsp;&nbsp;&nbsp;/&nbsp;&nbsp;&nbsp;ORreadme/wiki/</sub>
|#|Repository|Description|Stars|Updated|
|:-|:-|:-|:-|:-|
|1|[MLEveryday/100-Days-Of-ML-Code](https://github.com/MLEveryday/100-Days-Of-ML-Code)|100-Days-Of-ML-Code中文版|16833|2021-08-11|
|2|[wesm/pydata-book](https://github.com/wesm/pydata-book)|Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media|16107|2021-12-16|
|3|[zergtant/pytorch-handbook](https://github.com/zergtant/pytorch-handbook)|pytorch handbook是一本开源的书籍目标是帮助那些希望和使用PyTorch进行深度学习开发和研究的朋友快速入门其中包含的Pytorch教程全部通过测试保证可以成功运行|15827|2021-10-25|
|4|[ShusenTang/Dive-into-DL-PyTorch](https://github.com/ShusenTang/Dive-into-DL-PyTorch)|本项目将《动手学深度学习》(Dive into Deep Learning)原书中的MXNet实现改为PyTorch实现。|14238|2021-10-14|
|5|[fastai/fastbook](https://github.com/fastai/fastbook)|The fastai book, published as Jupyter Notebooks|14014|2021-12-07|
|6|[dragen1860/Deep-Learning-with-TensorFlow-book](https://github.com/dragen1860/Deep-Learning-with-TensorFlow-book)|深度学习入门开源书基于TensorFlow 2.0案例实战。Open source Deep Learning book, based on TensorFlow 2.0 framework.|12112|2021-08-30|
|7|[rasbt/python-machine-learning-book](https://github.com/rasbt/python-machine-learning-book)|The "Python Machine Learning (1st edition)" book code repository and info resource|11432|2021-07-30|
|8|[NLP-LOVE/ML-NLP](https://github.com/NLP-LOVE/ML-NLP)|此项目是机器学习(Machine Learning)、深度学习(Deep Learning)、NLP面试中常考到的知识点和代码实现也是作为一个算法工程师必会的理论基础知识。|10847|2021-06-26|
|9|[yidao620c/python3-cookbook](https://github.com/yidao620c/python3-cookbook)|《Python Cookbook》 3rd Edition Translation|9696|2021-08-27|
|10|[apachecn/Interview](https://github.com/apachecn/Interview)|Interview = 简历指南 + LeetCode + Kaggle|7208|2021-11-07|
|11|[Mikoto10032/DeepLearning](https://github.com/Mikoto10032/DeepLearning)|深度学习入门教程, 优秀文章, Deep Learning Tutorial|6790|2021-10-21|
|12|[fengdu78/Data-Science-Notes](https://github.com/fengdu78/Data-Science-Notes)|数据科学的笔记以及资料搜集|6087|2021-08-16|
|13|[xianhu/LearnPython](https://github.com/xianhu/LearnPython)|以撸代码的形式学习Python|6043|2021-11-11|
|14|[snowkylin/tensorflow-handbook](https://github.com/snowkylin/tensorflow-handbook)|简单粗暴 TensorFlow 2 A Concise Handbook of TensorFlow 2 一本简明的 TensorFlow 2 入门指导教程|3617|2021-09-04|
|15|[TrickyGo/Dive-into-DL-TensorFlow2.0](https://github.com/TrickyGo/Dive-into-DL-TensorFlow2.0)|本项目将《动手学深度学习》(Dive into Deep Learning)原书中的MXNet实现改为TensorFlow 2.0实现,项目已得到李沐老师的认可|3381|2021-08-31|
|16|[datawhalechina/easy-rl](https://github.com/datawhalechina/easy-rl)|强化学习中文教程在线阅读地址https://datawhalechina.github.io/easy-rl/|3012|2021-12-21|
|17|[datawhalechina/joyful-pandas](https://github.com/datawhalechina/joyful-pandas)|pandas中文教程|2791|2021-10-05|
|18|[PaddlePaddle/book](https://github.com/PaddlePaddle/book)|Deep Learning 101 with PaddlePaddle (『飞桨』深度学习框架入门教程)|2622|2021-11-12|
|19|[datawhalechina/competition-baseline](https://github.com/datawhalechina/competition-baseline)|数据科学竞赛知识、代码、思路|2555|2021-12-03|
|20|[zlotus/notes-linear-algebra](https://github.com/zlotus/notes-linear-algebra)|线性代数笔记|2400|2021-12-13|
|21|[szcf-weiya/ESL-CN](https://github.com/szcf-weiya/ESL-CN)|The Elements of Statistical Learning (ESL)的中文翻译、代码实现及其习题解答。|1856|2021-12-21|
|22|[xavier-zy/Awesome-pytorch-list-CNVersion](https://github.com/xavier-zy/Awesome-pytorch-list-CNVersion)|Awesome-pytorch-list 翻译工作进行中......|1500|2021-07-26|
|23|[Fafa-DL/Lhy_Machine_Learning](https://github.com/Fafa-DL/Lhy_Machine_Learning)|李宏毅2021春季机器学习课程课件及作业|1353|2021-12-20|
|24|[Charmve/computer-vision-in-action](https://github.com/Charmve/computer-vision-in-action)|《计算机视觉实战演练:算法与应用》中文电子书、源码、读者交流社区(持续更新中 ... 📘 在线电子书 https://charmve.github.io/computer-vision-in-action/ 👇项目主页|1238|2021-12-14|
|25|[advboxes/AdvBox](https://github.com/advboxes/AdvBox)|Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models. ...|1190|2021-09-08|
|26|[PaddlePaddle/awesome-DeepLearning](https://github.com/PaddlePaddle/awesome-DeepLearning)|深度学习入门课、资深课、特色课、学术案例、产业实践案例、深度学习知识百科及面试题库The course, case and knowledge of Deep Learning and AI|1104|2021-12-13|
|27|[ben1234560/AiLearning-Theory-Applying](https://github.com/ben1234560/AiLearning-Theory-Applying)|快速上手Ai理论及应用实战基础知识Basic knowledge、机器学习MachineLearning、深度学习DeepLearning2、自然语言处理BERT持续更新中。含大量注释及数据集力求每一位能看懂并复现。|980|2021-10-27|
|28|[zslucky/awesome-AI-books](https://github.com/zslucky/awesome-AI-books)|Some awesome AI related books and pdfs for learning and downloading, also apply some playground models for learning|967|2021-10-30|
|29|[matheusfacure/python-causality-handbook](https://github.com/matheusfacure/python-causality-handbook)|Causal Inference for the Brave and True. A light-hearted yet rigorous approach to learning about impact estimation and sensitivity analysis. |931|2021-12-20|
|30|[datawhalechina/team-learning-data-mining](https://github.com/datawhalechina/team-learning-data-mining)|主要存储Datawhale组队学习中“数据挖掘/机器学习”方向的资料。|902|2021-12-02|
|31|[huaweicloud/ModelArts-Lab](https://github.com/huaweicloud/ModelArts-Lab)|ModelArts-Lab是示例代码库。更多AI开发学习交流信息请访问华为云AI开发者社区huaweicloud.ai|882|2021-11-26|
|32|[fengdu78/WZU-machine-learning-course](https://github.com/fengdu78/WZU-machine-learning-course)|温州大学《机器学习》课程资料(代码、课件等)|795|2021-12-10|
|33|[wx-chevalier/AI-Series](https://github.com/wx-chevalier/AI-Series)|:books: [.md & .ipynb] Series of Artificial Intelligence & Deep Learning, including Mathematics Fundamentals, Python Practices, NLP Application, etc. 💫 人工智能与深度学习实战,数理统计篇 机器学习篇 深度学习篇 自然语言处理篇 工具 ...|715|2021-11-24|
|34|[CNFeffery/DataScienceStudyNotes](https://github.com/CNFeffery/DataScienceStudyNotes)|这个仓库保管从数据科学学习手札69开始的所有代码、数据等相关附件内容|694|2021-12-05|
|35|[zhouyanasd/or-pandas](https://github.com/zhouyanasd/or-pandas)|【运筹OR帷幄 数据科学】pandas教程系列电子书|667|2021-10-17|
|36|[geektutu/interview-questions](https://github.com/geektutu/interview-questions)|机器学习/深度学习/Python/Go语言面试题笔试题(Machine learning Deep Learning Python and Golang Interview Questions)|658|2021-06-12|
|37|[MemorialCheng/deep-learning-from-scratch](https://github.com/MemorialCheng/deep-learning-from-scratch)|《深度学习入门-基于Python的理论与实现》包含源代码和高清PDF(带书签)慕课网imooc《深度学习之神经网络(CNN-RNN-GAN)算法原理-实战》《菜菜的机器学习sklearn》|645|2021-11-03|
|38|[fly51fly/Practical_Python_Programming](https://github.com/fly51fly/Practical_Python_Programming)|北邮《Python编程与实践》课程资料|641|2021-06-09|
|39|[MorvanZhou/easy-scraping-tutorial](https://github.com/MorvanZhou/easy-scraping-tutorial)|Simple but useful Python web scraping tutorial code. |639|2021-08-18|
|40|[ZhiqingXiao/rl-book](https://github.com/ZhiqingXiao/rl-book)|Source codes for the book "Reinforcement Learning: Theory and Python Implementation"|603|2021-12-12|
|41|[DataXujing/YOLO-v5](https://github.com/DataXujing/YOLO-v5)|:art: Pytorch YOLO v5 训练自己的数据集超详细教程!!! :art: (提供PDF训练教程下载|582|2021-12-17|
|42|[datawhalechina/statistical-learning-method-solutions-manual](https://github.com/datawhalechina/statistical-learning-method-solutions-manual)|《统计学习方法》第二版习题解答在线阅读地址https://datawhalechina.github.io/statistical-learning-method-solutions-manual|577|2021-12-17|
|43|[datawhalechina/team-learning-program](https://github.com/datawhalechina/team-learning-program)|主要存储Datawhale组队学习中“编程、数据结构与算法”方向的资料。|570|2021-12-18|
|44|[shibing624/python-tutorial](https://github.com/shibing624/python-tutorial)|Python实用教程包括Python基础Python高级特性面向对象编程多线程数据库数据科学Flask爬虫开发教程。|547|2021-11-05|
|45|[datawhalechina/hands-on-data-analysis](https://github.com/datawhalechina/hands-on-data-analysis)|动手学数据分析以项目为主线,知识点孕育其中,通过边学、边做、边引导来得到更好的学习效果|498|2021-09-09|
|46|[openvinotoolkit/openvino_notebooks](https://github.com/openvinotoolkit/openvino_notebooks)|📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓|484|2021-12-21|
|47|[zkywsg/Daily-DeepLearning](https://github.com/zkywsg/Daily-DeepLearning)|🔥机器学习/深度学习/Python/算法面试/自然语言处理教程/剑指offer/machine learning/deeplearning/Python/Algorithm interview/NLP Tutorial|442|2021-07-13|
|48|[ga642381/ML2021-Spring](https://github.com/ga642381/ML2021-Spring)|**Official** 李宏毅 (Hung-yi Lee) 機器學習 Machine Learning 2021 Spring|414|2021-06-18|
|49|[bobo0810/PytorchNetHub](https://github.com/bobo0810/PytorchNetHub)|项目注释+论文复现+算法竞赛+Pytorch指北|402|2021-11-05|
|50|[evanzd/ICLR2021-OpenReviewData](https://github.com/evanzd/ICLR2021-OpenReviewData)|Crawl & visualize ICLR papers and reviews.|392|2021-11-09|
|51|[datawhalechina/team-learning-nlp](https://github.com/datawhalechina/team-learning-nlp)|主要存储Datawhale组队学习中“自然语言处理”方向的资料。|390|2021-09-17|
|52|[wolfparticle/machineLearningDeepLearning](https://github.com/wolfparticle/machineLearningDeepLearning)|李宏毅2021机器学习深度学习笔记PPT作业|338|2021-06-14|
|53|[SummerLife/EmbeddedSystem](https://github.com/SummerLife/EmbeddedSystem)|:books: 计算机体系架构、嵌入式系统基础与主流编程语言相关内容总结|321|2021-12-20|
|54|[qiguming/MLAPP_CN_CODE](https://github.com/qiguming/MLAPP_CN_CODE)|《Machine Learning: A Probabilistic Perspective》Kevin P. Murphy中文翻译和书中算法的Python实现。|309|2021-07-14|
|55|[liuhuanshuo/zaoqi-Python](https://github.com/liuhuanshuo/zaoqi-Python)|公众号早起Python|299|2021-10-20|
|56|[yunwei37/ZJU-CS-GIS-ClassNotes](https://github.com/yunwei37/ZJU-CS-GIS-ClassNotes)|一个浙江大学本科生的计算机、地理信息科学知识库 包含课程资料 学习笔记 大作业等( 数据结构与算法、人工智能、地理空间数据库、计算机组成、计算机网络、图形学、编译原理等课程)|275|2021-12-06|
|57|[ni1o1/pygeo-tutorial](https://github.com/ni1o1/pygeo-tutorial)|Tutorial of geospatial data processing using python 用python分析时空数据的教程(in Chinese and English )|260|2021-11-17|
|58|[JamesLavin/my_tech_resources](https://github.com/JamesLavin/my_tech_resources)|List of tech resources future me and other Javascript/Ruby/Python/Elixir/Elm developers might find useful|244|2021-12-21|
|59|[jarodHAN/Python-100-Days-master](https://github.com/jarodHAN/Python-100-Days-master)|python100天学习资料|230|2021-06-02|
|60|[d2l-ai/courses-zh-v2](https://github.com/d2l-ai/courses-zh-v2)|中文版 v2 课程|224|2021-09-14|
|61|[datawhalechina/fantastic-matplotlib](https://github.com/datawhalechina/fantastic-matplotlib)|Matplotlib中文教程在线阅读地址https://datawhalechina.github.io/fantastic-matplotlib/|211|2021-08-09|
|62|[Relph1119/statistical-learning-method-camp](https://github.com/Relph1119/statistical-learning-method-camp)|统计学习方法训练营课程作业及答案视频笔记在线阅读地址https://relph1119.github.io/statistical-learning-method-camp|189|2021-09-08|
|63|[datamonday/Time-Series-Analysis-Tutorial](https://github.com/datamonday/Time-Series-Analysis-Tutorial)|时间序列分析教程|188|2021-06-01|
|64|[LemenChao/PythonFromDAToDS](https://github.com/LemenChao/PythonFromDAToDS)|图书《Python编程从数据分析到数据科学》的配套资源|187|2021-10-10|
|65|[datawhalechina/team-learning-cv](https://github.com/datawhalechina/team-learning-cv)|主要存储Datawhale组队学习中“计算机视觉”方向的资料。|172|2021-09-06|
|66|[microsoft/AIforEarthDataSets](https://github.com/microsoft/AIforEarthDataSets)|Notebooks and documentation for AI-for-Earth-managed datasets on Azure|165|2021-12-16|
|67|[kingname/SourceCodeofMongoRedis](https://github.com/kingname/SourceCodeofMongoRedis)|《左手MongoDB右手Redis——从入门到商业实战》书籍配套源代码。|165|2021-08-19|
|68|[fire717/Machine-Learning](https://github.com/fire717/Machine-Learning)|机器学习&深度学习资料笔记&基本算法实现&资源整理ML / CV / NLP / DM...|164|2021-11-16|
|69|[xinychen/latex-cookbook](https://github.com/xinychen/latex-cookbook)|LaTeX论文写作教程 (中文版)|160|2021-12-11|
|70|[mepeichun/Efficient-Neural-Network-Bilibili](https://github.com/mepeichun/Efficient-Neural-Network-Bilibili)|B站Efficient-Neural-Network学习分享的配套代码|158|2021-12-08|
|71|[huangtinglin/Linear-Algebra-and-Its-Applications-notes](https://github.com/huangtinglin/Linear-Algebra-and-Its-Applications-notes)|《线性代数及其应用》笔记|152|2021-09-17|
|72|[sijichun/MathStatsCode](https://github.com/sijichun/MathStatsCode)|Codes for my mathematical statistics course|148|2021-10-25|
|73|[liuhuanshuo/Pandas_Advanced_Exercise](https://github.com/liuhuanshuo/Pandas_Advanced_Exercise)|Pandas进阶修炼300题|140|2021-09-22|
|74|[chansonZ/book-ml-sem](https://github.com/chansonZ/book-ml-sem)|《机器学习软件工程方法与实现》Method and implementation of machine learning software engineering|123|2021-11-29|
|75|[beiciliang/intro2musictech](https://github.com/beiciliang/intro2musictech)|公众号“无痛入门音乐科技”开源代码|119|2021-10-31|
|76|[fancyerii/deep_learning_theory_and_practice](https://github.com/fancyerii/deep_learning_theory_and_practice)|《深度学习理论与实战:基础篇》代码|118|2021-06-07|
|77|[oldratlee/software-practice-thoughts](https://github.com/oldratlee/software-practice-thoughts)|📚 🐣 软件实践文集。主题不限,思考讨论有趣有料就好,包含如 系统的模型分析/量化分析、开源漫游者指南、软件可靠性设计实践…… 🥤|106|2021-12-20|
|78|[datawhalechina/machine-learning-toy-code](https://github.com/datawhalechina/machine-learning-toy-code)|《机器学习》(西瓜书)代码实战|99|2021-12-17|
|79|[0809zheng/CS231n-assignment2019](https://github.com/0809zheng/CS231n-assignment2019)|CS231n 2019年春季学期课程作业|95|2021-11-08|
|80|[aialgorithm/Blog](https://github.com/aialgorithm/Blog)|Python机器学习算法技术博客有原创干货有code实践 |91|2021-12-20|
|81|[xuwening/blog](https://github.com/xuwening/blog)|对过往做做总结|90|2021-09-16|
|82|[sherlcok314159/ML](https://github.com/sherlcok314159/ML)|此仓库将介绍Deep Learning 所需要的基础知识以及NLP方面的模型原理到项目实操 : )|89|2021-12-15|
|83|[Divsigma/2020-cs213n](https://github.com/Divsigma/2020-cs213n)|一些公开课的笔记及作业|88|2021-11-13|
|84|[ZitongLu1996/Python-EEG-Handbook](https://github.com/ZitongLu1996/Python-EEG-Handbook)|Python脑电数据处理中文手册 - A Chinese handbook for EEG data analysis based on Python|87|2021-09-23|
|85|[batermj/data_sciences_campaign](https://github.com/batermj/data_sciences_campaign)|【数据科学家系列课程】|84|2021-12-21|
|86|[China-ChallengeHub/ChallengeHub-Baselines](https://github.com/China-ChallengeHub/ChallengeHub-Baselines)|ChallengeHub开源的各大比赛baseline集合|74|2021-09-24|
|87|[zhangjunhd/reading-notes](https://github.com/zhangjunhd/reading-notes)|张俊的读书笔记|66|2021-12-21|
|88|[ZhiningLiu1998/mesa](https://github.com/ZhiningLiu1998/mesa)|NeurIPS20 Build powerful ensemble class-imbalanced learning models via meta-knowledge-powered resampler. 设计元知识驱动的采样器解决类别不平衡问题|64|2021-08-18|
|89|[shibing624/nlp-tutorial](https://github.com/shibing624/nlp-tutorial)|自然语言处理NLP教程包括词向量词法分析预训练语言模型文本分类文本语义匹配信息抽取翻译对话。|63|2021-10-21|
|90|[afunTW/Python-Crawling-Tutorial](https://github.com/afunTW/Python-Crawling-Tutorial)|Python crawling tutorial|62|2021-12-13|
|91|[shiyanlou/louplus-dm](https://github.com/shiyanlou/louplus-dm)|实验楼 《楼+ 数据分析与挖掘实战》课程挑战作业参考答案|61|2021-08-16|
|92|[HuangCongQing/3D-Point-Clouds](https://github.com/HuangCongQing/3D-Point-Clouds)|🔥3D点云目标检测&语义分割-SOTA方法,代码,论文,数据集等|59|2021-10-13|
|93|[dota2heqiuzhi/dota2_data_analysis_tutorial](https://github.com/dota2heqiuzhi/dota2_data_analysis_tutorial)|《数据分析入门课程》配套代码|57|2021-12-10|
|94|[newaetech/chipwhisperer-jupyter](https://github.com/newaetech/chipwhisperer-jupyter)|Interactive ChipWhisperer tutorials using Jupyter notebooks.|55|2021-12-08|
|95|[heucoder/ML-DL_book](https://github.com/heucoder/ML-DL_book)|机器学习、深度学习一些个人认为不错的书籍。|54|2021-11-08|
|96|[wwtm/gitpython_examples](https://github.com/wwtm/gitpython_examples)|some interesting python examples|52|2021-10-16|
|97|[cumtcssuld/RSP_of_CUMTCS](https://github.com/cumtcssuld/RSP_of_CUMTCS)|【矿大计算机学院资源共享计划Resource SharingPlan of CUMTCS】本仓库由矿大计算机学院学生会学习部牵头维护由计算机学院全体同学共建共享。欢迎大家积极的参加到本资源库的建设中来吧每当有重大更新我们都会将整个库克隆到码云点击下边链接到我们的码云仓库可以获得更好的下载体验|51|2021-11-28|
|98|[hiDaDeng/DaDengAndHisPython](https://github.com/hiDaDeng/DaDengAndHisPython)|【微信公众号大邓和他的python】, Python语法快速入门https://www.bilibili.com/video/av44384851 Python网络爬虫快速入门https://www.bilibili.com/video/av72010301, 我的联系邮箱thunderhit@qq.com|51|2021-12-19|
|99|[xiaoxiaoyao/MyApp](https://github.com/xiaoxiaoyao/MyApp)|随便写的各种,点链接可以进入我的知乎|51|2021-11-19|
|100|[Amberlan1001/eat_tensorflow2_in_30_days_ipynb](https://github.com/Amberlan1001/eat_tensorflow2_in_30_days_ipynb)|30天掌握Tensorflow2.1 Jupyter Notebook 版|50|2021-12-17|
<div align="center">
<p><sub> -- -- </sub></p>
<a href="/content/docs/milestone.md"></a>便
</div>
<br/>
<div align="center"><a href="https://github.com/kon9chunkit/GitHub-Chinese-Top-Charts#github中文排行榜"></a> <a href="/content/docs/feedback.md"></a></div>