GitHub-Chinese-Top-Charts/content/charts/growth/knowledge/Jupyter-Notebook.md

117 lines
20 KiB
Java
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

<a href="https://github.com/kon9chunkit/GitHub-Chinese-Top-Charts#github中文排行榜"></a> <a href="/content/docs/feedback.md"></a>
# > > Jupyter Notebook
<sub>: 2021-12-22&nbsp;&nbsp;&nbsp;/&nbsp;&nbsp;&nbsp;ORreadme/wiki/</sub>
|#|Repository|Description|Stars|Average daily growth|Updated|
|:-|:-|:-|:-|:-|:-|
|1|[fastai/fastbook](https://github.com/fastai/fastbook)|The fastai book, published as Jupyter Notebooks|14014|21|2021-12-07|
|2|[ShusenTang/Dive-into-DL-PyTorch](https://github.com/ShusenTang/Dive-into-DL-PyTorch)|本项目将《动手学深度学习》(Dive into Deep Learning)原书中的MXNet实现改为PyTorch实现。|14238|14|2021-10-14|
|3|[zergtant/pytorch-handbook](https://github.com/zergtant/pytorch-handbook)|pytorch handbook是一本开源的书籍目标是帮助那些希望和使用PyTorch进行深度学习开发和研究的朋友快速入门其中包含的Pytorch教程全部通过测试保证可以成功运行|15827|14|2021-10-25|
|4|[MLEveryday/100-Days-Of-ML-Code](https://github.com/MLEveryday/100-Days-Of-ML-Code)|100-Days-Of-ML-Code中文版|16833|14|2021-08-11|
|5|[dragen1860/Deep-Learning-with-TensorFlow-book](https://github.com/dragen1860/Deep-Learning-with-TensorFlow-book)|深度学习入门开源书基于TensorFlow 2.0案例实战。Open source Deep Learning book, based on TensorFlow 2.0 framework.|12112|13|2021-08-30|
|6|[NLP-LOVE/ML-NLP](https://github.com/NLP-LOVE/ML-NLP)|此项目是机器学习(Machine Learning)、深度学习(Deep Learning)、NLP面试中常考到的知识点和代码实现也是作为一个算法工程师必会的理论基础知识。|10847|12|2021-06-26|
|7|[fengdu78/Data-Science-Notes](https://github.com/fengdu78/Data-Science-Notes)|数据科学的笔记以及资料搜集|6087|7|2021-08-16|
|8|[datawhalechina/easy-rl](https://github.com/datawhalechina/easy-rl)|强化学习中文教程在线阅读地址https://datawhalechina.github.io/easy-rl/|3012|6|2021-12-21|
|9|[Charmve/computer-vision-in-action](https://github.com/Charmve/computer-vision-in-action)|《计算机视觉实战演练:算法与应用》中文电子书、源码、读者交流社区(持续更新中 ... 📘 在线电子书 https://charmve.github.io/computer-vision-in-action/ 👇项目主页|1238|5|2021-12-14|
|10|[apachecn/Interview](https://github.com/apachecn/Interview)|Interview = 简历指南 + LeetCode + Kaggle|7208|5|2021-11-07|
|11|[rasbt/python-machine-learning-book](https://github.com/rasbt/python-machine-learning-book)|The "Python Machine Learning (1st edition)" book code repository and info resource|11432|5|2021-07-30|
|12|[wesm/pydata-book](https://github.com/wesm/pydata-book)|Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media|16107|5|2021-12-16|
|13|[Mikoto10032/DeepLearning](https://github.com/Mikoto10032/DeepLearning)|深度学习入门教程, 优秀文章, Deep Learning Tutorial|6790|5|2021-10-21|
|14|[Fafa-DL/Lhy_Machine_Learning](https://github.com/Fafa-DL/Lhy_Machine_Learning)|李宏毅2021春季机器学习课程课件及作业|1353|5|2021-12-20|
|15|[yidao620c/python3-cookbook](https://github.com/yidao620c/python3-cookbook)|《Python Cookbook》 3rd Edition Translation|9696|4|2021-08-27|
|16|[datawhalechina/joyful-pandas](https://github.com/datawhalechina/joyful-pandas)|pandas中文教程|2791|4|2021-10-05|
|17|[TrickyGo/Dive-into-DL-TensorFlow2.0](https://github.com/TrickyGo/Dive-into-DL-TensorFlow2.0)|本项目将《动手学深度学习》(Dive into Deep Learning)原书中的MXNet实现改为TensorFlow 2.0实现,项目已得到李沐老师的认可|3381|3|2021-08-31|
|18|[xianhu/LearnPython](https://github.com/xianhu/LearnPython)|以撸代码的形式学习Python|6043|3|2021-11-11|
|19|[datawhalechina/competition-baseline](https://github.com/datawhalechina/competition-baseline)|数据科学竞赛知识、代码、思路|2555|3|2021-12-03|
|20|[snowkylin/tensorflow-handbook](https://github.com/snowkylin/tensorflow-handbook)|简单粗暴 TensorFlow 2 A Concise Handbook of TensorFlow 2 一本简明的 TensorFlow 2 入门指导教程|3617|3|2021-09-04|
|21|[fengdu78/WZU-machine-learning-course](https://github.com/fengdu78/WZU-machine-learning-course)|温州大学《机器学习》课程资料(代码、课件等)|795|3|2021-12-10|
|22|[xavier-zy/Awesome-pytorch-list-CNVersion](https://github.com/xavier-zy/Awesome-pytorch-list-CNVersion)|Awesome-pytorch-list 翻译工作进行中......|1500|2|2021-07-26|
|23|[matheusfacure/python-causality-handbook](https://github.com/matheusfacure/python-causality-handbook)|Causal Inference for the Brave and True. A light-hearted yet rigorous approach to learning about impact estimation and sensitivity analysis. |931|2|2021-12-20|
|24|[openvinotoolkit/openvino_notebooks](https://github.com/openvinotoolkit/openvino_notebooks)|📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓|484|2|2021-12-21|
|25|[datawhalechina/team-learning-data-mining](https://github.com/datawhalechina/team-learning-data-mining)|主要存储Datawhale组队学习中“数据挖掘/机器学习”方向的资料。|902|2|2021-12-02|
|26|[liuhuanshuo/Pandas_Advanced_Exercise](https://github.com/liuhuanshuo/Pandas_Advanced_Exercise)|Pandas进阶修炼300题|140|2|2021-09-22|
|27|[ben1234560/AiLearning-Theory-Applying](https://github.com/ben1234560/AiLearning-Theory-Applying)|快速上手Ai理论及应用实战基础知识Basic knowledge、机器学习MachineLearning、深度学习DeepLearning2、自然语言处理BERT持续更新中。含大量注释及数据集力求每一位能看懂并复现。|980|2|2021-10-27|
|28|[datamonday/Time-Series-Analysis-Tutorial](https://github.com/datamonday/Time-Series-Analysis-Tutorial)|时间序列分析教程|188|1|2021-06-01|
|29|[xianghuisun/Chinese_KGQA](https://github.com/xianghuisun/Chinese_KGQA)|该仓库目的是实现基于知识图谱的中文问答系统|14|1|2021-12-20|
|30|[datawhalechina/team-learning-program](https://github.com/datawhalechina/team-learning-program)|主要存储Datawhale组队学习中“编程、数据结构与算法”方向的资料。|570|1|2021-12-18|
|31|[ssssww0905/-PyTorch-](https://github.com/ssssww0905/-PyTorch-)|【PyTorch】手把手教你跑通第一个神经网络|39|1|2021-12-21|
|32|[microsoft/AIforEarthDataSets](https://github.com/microsoft/AIforEarthDataSets)|Notebooks and documentation for AI-for-Earth-managed datasets on Azure|165|1|2021-12-16|
|33|[wolfparticle/machineLearningDeepLearning](https://github.com/wolfparticle/machineLearningDeepLearning)|李宏毅2021机器学习深度学习笔记PPT作业|338|1|2021-06-14|
|34|[xinychen/latex-cookbook](https://github.com/xinychen/latex-cookbook)|LaTeX论文写作教程 (中文版)|160|1|2021-12-11|
|35|[datawhalechina/fantastic-matplotlib](https://github.com/datawhalechina/fantastic-matplotlib)|Matplotlib中文教程在线阅读地址https://datawhalechina.github.io/fantastic-matplotlib/|211|1|2021-08-09|
|36|[huaweicloud/ModelArts-Lab](https://github.com/huaweicloud/ModelArts-Lab)|ModelArts-Lab是示例代码库。更多AI开发学习交流信息请访问华为云AI开发者社区huaweicloud.ai|882|1|2021-11-26|
|37|[fly51fly/Practical_Python_Programming](https://github.com/fly51fly/Practical_Python_Programming)|北邮《Python编程与实践》课程资料|641|1|2021-06-09|
|38|[zlotus/notes-linear-algebra](https://github.com/zlotus/notes-linear-algebra)|线性代数笔记|2400|1|2021-12-13|
|39|[ZhiqingXiao/rl-book](https://github.com/ZhiqingXiao/rl-book)|Source codes for the book "Reinforcement Learning: Theory and Python Implementation"|603|1|2021-12-12|
|40|[PaddlePaddle/book](https://github.com/PaddlePaddle/book)|Deep Learning 101 with PaddlePaddle (『飞桨』深度学习框架入门教程)|2622|1|2021-11-12|
|41|[PaddlePaddle/awesome-DeepLearning](https://github.com/PaddlePaddle/awesome-DeepLearning)|深度学习入门课、资深课、特色课、学术案例、产业实践案例、深度学习知识百科及面试题库The course, case and knowledge of Deep Learning and AI|1104|1|2021-12-13|
|42|[ga642381/ML2021-Spring](https://github.com/ga642381/ML2021-Spring)|**Official** 李宏毅 (Hung-yi Lee) 機器學習 Machine Learning 2021 Spring|414|1|2021-06-18|
|43|[MemorialCheng/deep-learning-from-scratch](https://github.com/MemorialCheng/deep-learning-from-scratch)|《深度学习入门-基于Python的理论与实现》包含源代码和高清PDF(带书签)慕课网imooc《深度学习之神经网络(CNN-RNN-GAN)算法原理-实战》《菜菜的机器学习sklearn》|645|1|2021-11-03|
|44|[d2l-ai/courses-zh-v2](https://github.com/d2l-ai/courses-zh-v2)|中文版 v2 课程|224|1|2021-09-14|
|45|[DataXujing/YOLO-v5](https://github.com/DataXujing/YOLO-v5)|:art: Pytorch YOLO v5 训练自己的数据集超详细教程!!! :art: (提供PDF训练教程下载|582|1|2021-12-17|
|46|[zslucky/awesome-AI-books](https://github.com/zslucky/awesome-AI-books)|Some awesome AI related books and pdfs for learning and downloading, also apply some playground models for learning|967|1|2021-10-30|
|47|[advboxes/AdvBox](https://github.com/advboxes/AdvBox)|Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models. ...|1190|1|2021-09-08|
|48|[CNFeffery/DataScienceStudyNotes](https://github.com/CNFeffery/DataScienceStudyNotes)|这个仓库保管从数据科学学习手札69开始的所有代码、数据等相关附件内容|694|1|2021-12-05|
|49|[zhouyanasd/or-pandas](https://github.com/zhouyanasd/or-pandas)|【运筹OR帷幄 数据科学】pandas教程系列电子书|667|1|2021-10-17|
|50|[datawhalechina/statistical-learning-method-solutions-manual](https://github.com/datawhalechina/statistical-learning-method-solutions-manual)|《统计学习方法》第二版习题解答在线阅读地址https://datawhalechina.github.io/statistical-learning-method-solutions-manual|577|1|2021-12-17|
|51|[ZitongLu1996/Python-EEG-Handbook](https://github.com/ZitongLu1996/Python-EEG-Handbook)|Python脑电数据处理中文手册 - A Chinese handbook for EEG data analysis based on Python|87|1|2021-09-23|
|52|[szcf-weiya/ESL-CN](https://github.com/szcf-weiya/ESL-CN)|The Elements of Statistical Learning (ESL)的中文翻译、代码实现及其习题解答。|1856|1|2021-12-21|
|53|[datawhalechina/machine-learning-toy-code](https://github.com/datawhalechina/machine-learning-toy-code)|《机器学习》(西瓜书)代码实战|99|1|2021-12-17|
|54|[datawhalechina/hands-on-data-analysis](https://github.com/datawhalechina/hands-on-data-analysis)|动手学数据分析以项目为主线,知识点孕育其中,通过边学、边做、边引导来得到更好的学习效果|498|1|2021-09-09|
|55|[datawhalechina/team-learning-nlp](https://github.com/datawhalechina/team-learning-nlp)|主要存储Datawhale组队学习中“自然语言处理”方向的资料。|390|1|2021-09-17|
|56|[evanzd/ICLR2021-OpenReviewData](https://github.com/evanzd/ICLR2021-OpenReviewData)|Crawl & visualize ICLR papers and reviews.|392|1|2021-11-09|
|57|[datawhalechina/wow-plotly](https://github.com/datawhalechina/wow-plotly)|高级可视化神器plotly的学习|16|0|2021-07-04|
|58|[wmpscc/CNN-Series-Getting-Started-and-PyTorch-Implementation](https://github.com/wmpscc/CNN-Series-Getting-Started-and-PyTorch-Implementation)|我的笔记和Demo包含分类检测、分割、知识蒸馏。|48|0|2021-10-27|
|59|[zzy99/competition-solutions](https://github.com/zzy99/competition-solutions)|我的数据竞赛方案总结|17|0|2021-11-16|
|60|[fry404006308/fry_course_materials](https://github.com/fry404006308/fry_course_materials)|范仁义录播课资料|17|0|2021-11-03|
|61|[hitlic/python_book](https://github.com/hitlic/python_book)|清华大学出版社《Python从入门到提高》源代码、课件|13|0|2021-10-02|
|62|[shibing624/python-tutorial](https://github.com/shibing624/python-tutorial)|Python实用教程包括Python基础Python高级特性面向对象编程多线程数据库数据科学Flask爬虫开发教程。|547|0|2021-11-05|
|63|[wowchemy/hugo-blog-theme](https://github.com/wowchemy/hugo-blog-theme)|📝 Hugo Academic Blog Theme. 轻松创建一个简约博客. No code, highly customizable using widgets.|45|0|2021-12-11|
|64|[binzhouchn/machine_learning](https://github.com/binzhouchn/machine_learning)|抽象来讲,机器学习问题是把数据转换成信息再提炼到知识的过程,特征是“数据-->信息”的过程,决定了结果的上限,而分类器是“信息-->知识”的过程,则是去逼近这个上限|18|0|2021-10-15|
|65|[sijichun/MathStatsCode](https://github.com/sijichun/MathStatsCode)|Codes for my mathematical statistics course|148|0|2021-10-25|
|66|[ymzis69/gddw_track3](https://github.com/ymzis69/gddw_track3)|阿里云天池广东电网识别挑战赛(赛道三) 亚军方案分享|11|0|2021-09-15|
|67|[datawhalechina/team-learning-cv](https://github.com/datawhalechina/team-learning-cv)|主要存储Datawhale组队学习中“计算机视觉”方向的资料。|172|0|2021-09-06|
|68|[cador/Python_Predict_Analysis_Algorithm_Book_Codes](https://github.com/cador/Python_Predict_Analysis_Algorithm_Book_Codes)|《Python预测之美数据分析与算法实战》书籍代码维护|33|0|2021-08-25|
|69|[zhiyu1998/Python-Basis-Notes](https://github.com/zhiyu1998/Python-Basis-Notes)|一份包含了Python基础学习需要的知识框架 :snake: + 爬虫基础 :spider: + numpy基础 :bar_chart: + pandas基础 :panda_face:|46|0|2021-12-11|
|70|[Mazeqi/PaperNote](https://github.com/Mazeqi/PaperNote)|阅读论文的一些笔记|11|0|2021-12-09|
|71|[reganzm/Learn-Pytorch-And-Become-A-Data-Scientist](https://github.com/reganzm/Learn-Pytorch-And-Become-A-Data-Scientist)|《学好Pytorch成为数据科学家》书籍随书代码|19|0|2021-10-21|
|72|[johnnychen94/Julia_and_its_applications](https://github.com/johnnychen94/Julia_and_its_applications)|2021 年《Julia 语言及其应用》系列讲座的材料|33|0|2021-12-05|
|73|[OUCTheoryGroup/colab_demo](https://github.com/OUCTheoryGroup/colab_demo)|中国海洋大学视觉实验室前沿理论小组 pytorch 学习|48|0|2021-10-16|
|74|[BrikerMan/tf2-101](https://github.com/BrikerMan/tf2-101)|Repository for Book 《TensorFlow 2.0 入门实践》|11|0|2021-10-28|
|75|[kingname/SourceCodeofMongoRedis](https://github.com/kingname/SourceCodeofMongoRedis)|《左手MongoDB右手Redis——从入门到商业实战》书籍配套源代码。|165|0|2021-08-19|
|76|[WYGNG/USTC_SSE_AI](https://github.com/WYGNG/USTC_SSE_AI)|中国科学技术大学软件学院人工智能课程|12|0|2021-09-08|
|77|[ljyslyc/Book-KnowledgeGraph-Recommendation](https://github.com/ljyslyc/Book-KnowledgeGraph-Recommendation)|书籍知识图谱推荐系统|25|0|2021-07-20|
|78|[chinapnr/python_study](https://github.com/chinapnr/python_study)|python 入门培训教材,实用、快速、清晰|42|0|2021-06-24|
|79|[xhnae86/100python-](https://github.com/xhnae86/100python-)|Python 100天练习进阶|19|0|2021-06-01|
|80|[jinhualee/datashine](https://github.com/jinhualee/datashine)|《Python统计与数据分析实战》课程代码包含了大部分统计与非参数统计和数据分析的模型、算法。回归分析、方差分析、点估计、假设检验、主成分分析、因子分析、聚类分析、判别分析、对数线性模型、分位回归模型以及列联表分析、非参数平滑、非参数密度估计等各种非参数统计方法。|31|0|2021-08-16|
|81|[hxchua/datadoubleconfirm](https://github.com/hxchua/datadoubleconfirm)|Simple datasets and notebooks for data visualization, statistical analysis and modelling - with write-ups here: http://projectosyo.wix.com/datadoubleconfirm. |35|0|2021-12-14|
|82|[howie6879/pylab](https://github.com/howie6879/pylab)|和Python相关的学习笔记机器学习、算法、进阶书籍、文档博客地址https://www.howie6879.cn|37|0|2021-12-09|
|83|[JULIELab/MEmoLon](https://github.com/JULIELab/MEmoLon)|Repository for our ACL 2020 paper "Learning and Evaluating Emotion Lexicons for 91 Languages"|17|0|2021-08-23|
|84|[aialgorithm/AiPy](https://github.com/aialgorithm/AiPy)|Python机器学习、深度学习算法开发等学习资源分享|31|0|2021-12-14|
|85|[NjtechCVLab/Level_1](https://github.com/NjtechCVLab/Level_1)|入门资料|12|0|2021-11-29|
|86|[SocratesAcademy/css](https://github.com/SocratesAcademy/css)|《计算社会科学》课程|43|0|2021-09-11|
|87|[Global-Policy-Lab/gpl-covid](https://github.com/Global-Policy-Lab/gpl-covid)|Repo for code and small datasets related to Global Policy Lab's COVID-19 policy analysis. Read and share the acompanying article here:|11|0|2021-07-09|
|88|[Relph1119/statistical-learning-method-camp](https://github.com/Relph1119/statistical-learning-method-camp)|统计学习方法训练营课程作业及答案视频笔记在线阅读地址https://relph1119.github.io/statistical-learning-method-camp|189|0|2021-09-08|
|89|[fancyerii/deep_learning_theory_and_practice](https://github.com/fancyerii/deep_learning_theory_and_practice)|《深度学习理论与实战:基础篇》代码|118|0|2021-06-07|
|90|[xiaoyusmd/PythonDataScience](https://github.com/xiaoyusmd/PythonDataScience)|Python数据科学系专栏pandas、Numpy、SKlearn、Matplotlib、实战项目代码、讲解、数据集|32|0|2021-12-18|
|91|[wanghao15536870732/StudyNotes](https://github.com/wanghao15536870732/StudyNotes)|📖 学习笔记|10|0|2021-11-08|
|92|[fly51fly/Principle_of_Web_Search_2021](https://github.com/fly51fly/Principle_of_Web_Search_2021)|北邮《网络搜索引擎原理》课程(2021)|38|0|2021-11-05|
|93|[ZhiningLiu1998/mesa](https://github.com/ZhiningLiu1998/mesa)|NeurIPS20 Build powerful ensemble class-imbalanced learning models via meta-knowledge-powered resampler. 设计元知识驱动的采样器解决类别不平衡问题|64|0|2021-08-18|
|94|[fire717/Python-Toolkit](https://github.com/fire717/Python-Toolkit)|轮子/ 常用库/ 书籍笔记/ 小程序|16|0|2021-12-06|
|95|[rhidra/autopilot](https://github.com/rhidra/autopilot)|A UAV autonomous navigation autopilot, made with ROS, MAVROS, PX4 and Gazebo. Check out my master thesis in the repo for more info.|10|0|2021-09-23|
|96|[LemenChao/PythonFromDAToDS](https://github.com/LemenChao/PythonFromDAToDS)|图书《Python编程从数据分析到数据科学》的配套资源|187|0|2021-10-10|
|97|[chansonZ/book-ml-sem](https://github.com/chansonZ/book-ml-sem)|《机器学习软件工程方法与实现》Method and implementation of machine learning software engineering|123|0|2021-11-29|
|98|[Amberlan1001/eat_tensorflow2_in_30_days_ipynb](https://github.com/Amberlan1001/eat_tensorflow2_in_30_days_ipynb)|30天掌握Tensorflow2.1 Jupyter Notebook 版|50|0|2021-12-17|
|99|[dota2heqiuzhi/dota2_data_analysis_tutorial](https://github.com/dota2heqiuzhi/dota2_data_analysis_tutorial)|《数据分析入门课程》配套代码|57|0|2021-12-10|
|100|[hzcforever/Something](https://github.com/hzcforever/Something)|面试知识点 + 笔试刷题总结。|21|0|2021-09-15|
<div align="center">
<p><sub> -- -- </sub></p>
<a href="/content/docs/milestone.md"></a>便
</div>
<br/>
<div align="center"><a href="https://github.com/kon9chunkit/GitHub-Chinese-Top-Charts#github中文排行榜"></a> <a href="/content/docs/feedback.md"></a></div>