Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

256 lines
12 KiB

from copy import deepcopy
from typing import Dict, List
import torch
from torch.fx.node import Node
from colossalai._analyzer.fx.node_util import MetaInfo
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
CommAction,
CommType,
OperationData,
OperationDataType,
TrainCycleItem,
)
from colossalai.device.device_mesh import DeviceMesh
from colossalai.tensor.comm_spec import CommSpec
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.tensor.sharding_spec import ShardingSpec
shape_consistency_manager = ShapeConsistencyManager()
def runtime_apply(node: Node, origin_dict: Dict, input_dict: Dict, node_index: int, user_node_index: int):
"""
This method will be invoked during runtime to do the shape consistency, which make sure the activations is converted into
the user node expected form.
"""
origin_sharding_spec = origin_dict[node_index]
target_sharding_spec = input_dict[node_index][user_node_index]
return shape_consistency_manager.apply_for_autoparallel_runtime(node, origin_sharding_spec, target_sharding_spec)
def runtime_apply_for_iterable_object(node: Node, origin_dict: Dict, input_dict: Dict, node_index: int,
user_node_index: int):
"""
This method will be invoked during runtime to do the shape consistency, which makes sure the activations in type of tuple or list
is converted into the user node expected form.
"""
rst = []
for index, (origin_sharding_spec,
target_sharding_spec) in enumerate(zip(origin_dict[node_index],
input_dict[node_index][user_node_index])):
rst.append(
shape_consistency_manager.apply_for_autoparallel_runtime(node[index], origin_sharding_spec,
target_sharding_spec))
rst = type(node)(rst)
return rst
def runtime_comm_spec_apply(tensor: torch.Tensor, comm_actions_dict: Dict, node_index: int, op_data_name: str):
"""
This method will be invoked during runtime to apply the comm action following the instruction of comm spec.
"""
comm_action = comm_actions_dict[node_index][op_data_name]
if isinstance(comm_action.comm_spec, CommSpec):
rst = comm_action.comm_spec.covert_spec_to_action(tensor)
else:
origin_sharding_spec = comm_action.comm_spec['src_spec']
tgt_sharding_spec = comm_action.comm_spec['tgt_spec']
rst = shape_consistency_manager.apply_for_autoparallel_runtime(tensor, origin_sharding_spec, tgt_sharding_spec)
return rst
def _preprocess_graph(nodes: List[Node]):
"""
This method is used to extract all the placeholders with sharding information,
and mapping the nodes into the index of the origin graph.
"""
# mapping the node into the origin graph index
node_to_index_dict = {}
index = 0
for node in nodes:
if node.target == 'sharding_spec_convert_dict':
input_dict_node = node
continue
if node.target == 'origin_node_sharding_spec_dict':
origin_dict_node = node
continue
if node.target == 'comm_actions_dict':
comm_actions_dict_node = node
continue
if not hasattr(node, 'best_strategy'):
continue
node_to_index_dict[node] = index
index += 1
return input_dict_node, origin_dict_node, comm_actions_dict_node, node_to_index_dict
def _shape_consistency_apply(gm: torch.fx.GraphModule):
"""
This pass is used to add the shape consistency node to the origin graph.
"""
mod_graph = gm.graph
nodes = tuple(mod_graph.nodes)
input_dict_node, origin_dict_node, _, node_to_index_dict = _preprocess_graph(nodes)
for node in nodes:
if not hasattr(node, 'best_strategy') or node.op == 'output':
continue
for user_node_index, user_node in enumerate(node.strategies_vector.successor_nodes):
if isinstance(node.sharding_spec, (list, tuple)):
assert isinstance(
node.target_sharding_specs,
(list,
tuple)), 'target sharding specs should be tuple or list when node.sharding_spec is tuple or list'
total_difference = 0
for sharding_spec, target_sharding_spec in zip(node.sharding_spec,
node.target_sharding_specs[user_node_index]):
total_difference += sharding_spec.sharding_sequence_difference(target_sharding_spec)
if total_difference == 0:
continue
with mod_graph.inserting_before(user_node):
shape_consistency_node = mod_graph.create_node('call_function',
runtime_apply_for_iterable_object,
args=(node, origin_dict_node, input_dict_node,
node_to_index_dict[node], user_node_index))
else:
assert isinstance(node.sharding_spec,
ShardingSpec), 'node.sharding_spec should be type of ShardingSpec, tuple or list.'
if node.sharding_spec.sharding_sequence_difference(node.target_sharding_specs[user_node_index]) == 0:
continue
with mod_graph.inserting_before(user_node):
shape_consistency_node = mod_graph.create_node('call_function',
runtime_apply,
args=(node, origin_dict_node, input_dict_node,
node_to_index_dict[node], user_node_index))
if hasattr(user_node.meta['info'], 'activation_checkpoint'):
MetaInfo(shape_consistency_node,
mod_dir=user_node.meta['info'].mod_dir,
activation_checkpoint=tuple(user_node.meta['info'].activation_checkpoint))
new_args = list(user_node.args)
new_kwargs = dict(user_node.kwargs)
# the origin node may be a positional argument or key word argument of user node
if node in new_args:
# substitute the origin node with shape_consistency_node
origin_index_args = new_args.index(node)
new_args[origin_index_args] = shape_consistency_node
user_node.args = tuple(new_args)
elif str(node) in new_kwargs:
# substitute the origin node with shape_consistency_node
new_kwargs[str(node)] = shape_consistency_node
user_node.kwargs = new_kwargs
return gm
def _comm_spec_apply(gm: torch.fx.GraphModule):
"""
This pass is used to add the comm spec apply node to the origin graph.
"""
mod_graph = gm.graph
nodes = tuple(mod_graph.nodes)
_, _, comm_actions_dict_node, node_to_index_dict = _preprocess_graph(nodes)
for node in nodes:
if not hasattr(node, 'best_strategy') or node.op == 'output':
continue
comm_actions = node.best_strategy.communication_actions
for op_data, comm_action in comm_actions.items():
if comm_action.comm_type == CommType.HOOK:
continue
if comm_action.comm_type == CommType.BEFORE:
if op_data.type == OperationDataType.OUTPUT:
comm_object = node
elif comm_action.key_for_kwarg is not None:
comm_object = node.kwargs[comm_action.key_for_kwarg]
else:
comm_object = node.args[comm_action.arg_index]
with mod_graph.inserting_before(node):
comm_spec_apply_node = mod_graph.create_node('call_function',
runtime_comm_spec_apply,
args=(comm_object, comm_actions_dict_node,
node_to_index_dict[node], op_data.name))
# the origin node may be a positional argument or key word argument of user node
if comm_action.key_for_kwarg is not None:
# substitute the origin node with comm_spec_apply_node
new_kwargs = dict(node.kwargs)
new_kwargs[comm_action.key_for_kwarg] = comm_spec_apply_node
node.kwargs = new_kwargs
else:
# substitute the origin node with comm_spec_apply_node
new_args = list(node.args)
new_args[comm_action.arg_index] = comm_spec_apply_node
node.args = tuple(new_args)
elif comm_action.comm_type == CommType.AFTER:
with mod_graph.inserting_after(node):
comm_spec_apply_node = mod_graph.create_node('call_function',
runtime_comm_spec_apply,
args=(node, comm_actions_dict_node,
node_to_index_dict[node], op_data.name))
user_list = list(node.users.keys())
for user in user_list:
if user == comm_spec_apply_node:
continue
new_args = list(user.args)
new_kwargs = dict(user.kwargs)
# the origin node may be a positional argument or key word argument of user node
if node in new_args:
# substitute the origin node with comm_spec_apply_node
new_args[new_args.index(node)] = comm_spec_apply_node
user.args = tuple(new_args)
elif str(node) in new_kwargs:
# substitute the origin node with comm_spec_apply_node
new_kwargs[str(node)] = comm_spec_apply_node
user.kwargs = new_kwargs
if hasattr(node.meta['info'], 'activation_checkpoint'):
MetaInfo(comm_spec_apply_node,
mod_dir=node.meta['info'].mod_dir,
activation_checkpoint=tuple(node.meta['info'].activation_checkpoint))
return gm
def _act_annotation_pass(gm: torch.fx.GraphModule):
"""
This pass is used to add the act annotation to the new inserted nodes.
"""
mod_graph = gm.graph
nodes = tuple(mod_graph.nodes)
for node in nodes:
if not hasattr(node.meta, 'activation_checkpoint'):
from .runtime_preparation_pass import size_processing
user_act_annotation = -1
input_act_annotation = -1
for user_node in node.users.keys():
if 'activation_checkpoint' in user_node.meta:
user_act_annotation = user_node.meta['activation_checkpoint']
break
for input_node in node._input_nodes.keys():
if 'activation_checkpoint' in input_node.meta:
input_act_annotation = input_node.meta['activation_checkpoint']
break
if user_act_annotation == input_act_annotation and user_act_annotation != -1:
node.meta['activation_checkpoint'] = user_act_annotation
return gm
def runtime_apply_pass(gm: torch.fx.GraphModule):
"""
The method manages all the passes acting on the distributed training runtime.
"""
gm = _shape_consistency_apply(gm)
gm = _comm_spec_apply(gm)
return gm