mirror of https://github.com/hpcaitech/ColossalAI
68 lines
2.3 KiB
Python
68 lines
2.3 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import gc
|
|
|
|
import psutil
|
|
import torch
|
|
|
|
from colossalai.context.parallel_mode import ParallelMode
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.logging import get_dist_logger
|
|
|
|
|
|
def bytes_to_GB(val, decimal=2):
|
|
'''A byte-to-Gigabyte converter, defaultly using binary notation.
|
|
|
|
:param val: X bytes to convert
|
|
:return: X' GB
|
|
'''
|
|
return round(val / (1024 * 1024 * 1024), decimal)
|
|
|
|
|
|
def bytes_to_MB(val, decimal=2):
|
|
'''A byte-to-Megabyte converter, defaultly using binary notation.
|
|
|
|
:param val: X bytes to convert
|
|
:return: X' MB
|
|
'''
|
|
return round(val / (1024 * 1024), decimal)
|
|
|
|
|
|
def report_memory_usage(message, logger=None, report_cpu=False):
|
|
'''Calculate and print RAM usage (in GB)
|
|
|
|
:param message: a prefix message to add in the log
|
|
:type message: str
|
|
:param logger: an instance of :class:`colossalai.logging.DistributedLogger`
|
|
:type logger: :class:`colossalai.logging.DistributedLogger`
|
|
:param report_cpu: whether to report CPU memory
|
|
:type report_cpu: bool
|
|
:raises EnvironmentError: raise error if no distributed environment has been initialized
|
|
'''
|
|
if not gpc.is_initialized(ParallelMode.GLOBAL):
|
|
raise EnvironmentError("No distributed environment is initialized")
|
|
|
|
gpu_allocated = bytes_to_MB(torch.cuda.memory_allocated())
|
|
gpu_max_allocated = bytes_to_MB(torch.cuda.max_memory_allocated())
|
|
gpu_cached = bytes_to_MB(torch.cuda.memory_reserved())
|
|
gpu_max_cached = bytes_to_MB(torch.cuda.max_memory_reserved())
|
|
|
|
full_log = f"{message}: GPU: allocated {gpu_allocated} MB, max allocated {gpu_max_allocated} MB, " \
|
|
+ f"cached: {gpu_cached} MB, max cached: {gpu_max_cached} MB"
|
|
|
|
if report_cpu:
|
|
# python doesn't do real-time garbage collection so do it explicitly to get the correct RAM reports
|
|
gc.collect()
|
|
vm_stats = psutil.virtual_memory()
|
|
vm_used = bytes_to_MB(vm_stats.total - vm_stats.available)
|
|
full_log += f", CPU Virtual Memory: used = {vm_used} MB, percent = {vm_stats.percent}%"
|
|
|
|
if logger is None:
|
|
logger = get_dist_logger()
|
|
logger.info(full_log)
|
|
|
|
# get the peak memory to report correct data, so reset the counter for the next call
|
|
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
|
|
torch.cuda.reset_peak_memory_stats()
|