#!/usr/bin/env python # -*- encoding: utf-8 -*- import gc import psutil import torch from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.logging import get_dist_logger def bytes_to_GB(val, decimal=2): '''A byte-to-Gigabyte converter, defaultly using binary notation. :param val: X bytes to convert :return: X' GB ''' return round(val / (1024 * 1024 * 1024), decimal) def bytes_to_MB(val, decimal=2): '''A byte-to-Megabyte converter, defaultly using binary notation. :param val: X bytes to convert :return: X' MB ''' return round(val / (1024 * 1024), decimal) def report_memory_usage(message, logger=None, report_cpu=False): '''Calculate and print RAM usage (in GB) :param message: a prefix message to add in the log :type message: str :param logger: an instance of :class:`colossalai.logging.DistributedLogger` :type logger: :class:`colossalai.logging.DistributedLogger` :param report_cpu: whether to report CPU memory :type report_cpu: bool :raises EnvironmentError: raise error if no distributed environment has been initialized ''' if not gpc.is_initialized(ParallelMode.GLOBAL): raise EnvironmentError("No distributed environment is initialized") gpu_allocated = bytes_to_MB(torch.cuda.memory_allocated()) gpu_max_allocated = bytes_to_MB(torch.cuda.max_memory_allocated()) gpu_cached = bytes_to_MB(torch.cuda.memory_reserved()) gpu_max_cached = bytes_to_MB(torch.cuda.max_memory_reserved()) full_log = f"{message}: GPU: allocated {gpu_allocated} MB, max allocated {gpu_max_allocated} MB, " \ + f"cached: {gpu_cached} MB, max cached: {gpu_max_cached} MB" if report_cpu: # python doesn't do real-time garbage collection so do it explicitly to get the correct RAM reports gc.collect() vm_stats = psutil.virtual_memory() vm_used = bytes_to_MB(vm_stats.total - vm_stats.available) full_log += f", CPU Virtual Memory: used = {vm_used} MB, percent = {vm_stats.percent}%" if logger is None: logger = get_dist_logger() logger.info(full_log) # get the peak memory to report correct data, so reset the counter for the next call if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+ torch.cuda.reset_peak_memory_stats()