ColossalAI/tests/test_shardformer/test_model/test_shard_t5.py

100 lines
3.3 KiB
Python

import copy
import os
import random
import pytest
import torch
from transformers import AutoTokenizer, BertConfig, BertForMaskedLM, T5Config, T5ForConditionalGeneration, T5Tokenizer
import colossalai
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer.shard import ShardConfig, shard_model
from colossalai.testing import rerun_if_address_is_in_use, spawn
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
CONFIG = dict(parallel=dict(data=1, pipeline=1, tensor=dict(size=2, mode='1d')),)
tokenizer = T5Tokenizer.from_pretrained("t5-small")
def build_model(rank, world_size):
config = T5Config.from_pretrained("t5-small")
config.dropout_rate = 0
org_model = T5ForConditionalGeneration.from_pretrained("t5-small", config=config).to('cuda')
shardconfig = ShardConfig(
rank=rank,
world_size=world_size,
gather_output=True,
)
org_model_for_shard = copy.deepcopy(org_model)
sharded_model = shard_model(org_model_for_shard, shardconfig).to('cuda')
return org_model, sharded_model
def check_forward(org_model, sharded_model):
input_ids = tokenizer("translate English to German: The house is wonderful.",
return_tensors="pt").input_ids.to('cuda')
#orgin model
org_model.eval()
org_output = org_model.generate(input_ids)
#shard model
sharded_model.eval()
shard_output = sharded_model.generate(input_ids)
assert torch.allclose(
org_output[0], shard_output[0],
atol=1e-5), f"shard model output is not equal to orgin model output\n{org_out[0]}\n{shard_out[0]}"
def check_backward(org_model, sharded_model):
# prepare input
input_ids = tokenizer("translate English to German: The house is wonderful.",
return_tensors="pt").input_ids.to('cuda')
labels = tokenizer("Das Haus ist wunderbar.", return_tensors="pt").input_ids.to('cuda')
#orgin model
org_model.train()
org_loss = org_model(input_ids=input_ids, labels=labels).loss
org_loss.backward()
org_grad = org_model.encoder.block[0].layer[0].SelfAttention.q.weight.grad
#shard model
sharded_model.train()
shard_loss = sharded_model(input_ids=input_ids, labels=labels).loss
shard_loss.backward()
shard_grad = sharded_model.encoder.block[0].layer[0].SelfAttention.q.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
assert torch.allclose(org_loss, shard_loss,
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{shard_grad}"
def check_t5(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
org_model, sharded_model = build_model(rank, world_size)
check_forward(org_model, sharded_model)
check_backward(org_model, sharded_model)
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_t5():
spawn(check_t5, 2)
if __name__ == "__main__":
test_t5()