import copy import os import random import pytest import torch from transformers import AutoTokenizer, BertConfig, BertForMaskedLM, T5Config, T5ForConditionalGeneration, T5Tokenizer import colossalai from colossalai.logging import disable_existing_loggers from colossalai.shardformer.shard import ShardConfig, shard_model from colossalai.testing import rerun_if_address_is_in_use, spawn os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true' CONFIG = dict(parallel=dict(data=1, pipeline=1, tensor=dict(size=2, mode='1d')),) tokenizer = T5Tokenizer.from_pretrained("t5-small") def build_model(rank, world_size): config = T5Config.from_pretrained("t5-small") config.dropout_rate = 0 org_model = T5ForConditionalGeneration.from_pretrained("t5-small", config=config).to('cuda') shardconfig = ShardConfig( rank=rank, world_size=world_size, gather_output=True, ) org_model_for_shard = copy.deepcopy(org_model) sharded_model = shard_model(org_model_for_shard, shardconfig).to('cuda') return org_model, sharded_model def check_forward(org_model, sharded_model): input_ids = tokenizer("translate English to German: The house is wonderful.", return_tensors="pt").input_ids.to('cuda') #orgin model org_model.eval() org_output = org_model.generate(input_ids) #shard model sharded_model.eval() shard_output = sharded_model.generate(input_ids) assert torch.allclose( org_output[0], shard_output[0], atol=1e-5), f"shard model output is not equal to orgin model output\n{org_out[0]}\n{shard_out[0]}" def check_backward(org_model, sharded_model): # prepare input input_ids = tokenizer("translate English to German: The house is wonderful.", return_tensors="pt").input_ids.to('cuda') labels = tokenizer("Das Haus ist wunderbar.", return_tensors="pt").input_ids.to('cuda') #orgin model org_model.train() org_loss = org_model(input_ids=input_ids, labels=labels).loss org_loss.backward() org_grad = org_model.encoder.block[0].layer[0].SelfAttention.q.weight.grad #shard model sharded_model.train() shard_loss = sharded_model(input_ids=input_ids, labels=labels).loss shard_loss.backward() shard_grad = sharded_model.encoder.block[0].layer[0].SelfAttention.q.weight.grad shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)] shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad) all_shard_grad = torch.cat(shard_grad_list, dim=0) assert torch.allclose(org_loss, shard_loss, atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}" assert torch.allclose(org_grad, all_shard_grad, atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{shard_grad}" def check_t5(rank, world_size, port): disable_existing_loggers() colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') org_model, sharded_model = build_model(rank, world_size) check_forward(org_model, sharded_model) check_backward(org_model, sharded_model) torch.cuda.empty_cache() @pytest.mark.dist @rerun_if_address_is_in_use() def test_t5(): spawn(check_t5, 2) if __name__ == "__main__": test_t5()