mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
77 lines
2.4 KiB
77 lines
2.4 KiB
# Overview
|
|
|
|
This is an example showing how to run OPT generation. The OPT model is implemented using ColossalAI.
|
|
|
|
It supports tensor parallelism, batching and caching.
|
|
|
|
# How to run
|
|
|
|
Run OPT-125M:
|
|
```shell
|
|
python opt_fastapi.py opt-125m
|
|
```
|
|
|
|
It will launch a HTTP server on `0.0.0.0:7070` by default and you can customize host and port. You can open `localhost:7070/docs` in your browser to see the openapi docs.
|
|
|
|
## Configure
|
|
|
|
### Configure model
|
|
```shell
|
|
python opt_fastapi.py <model>
|
|
```
|
|
Available models: opt-125m, opt-6.7b, opt-30b, opt-175b.
|
|
|
|
### Configure tensor parallelism
|
|
```shell
|
|
python opt_fastapi.py <model> --tp <TensorParallelismWorldSize>
|
|
```
|
|
The `<TensorParallelismWorldSize>` can be an integer in `[1, #GPUs]`. Default `1`.
|
|
|
|
### Configure checkpoint
|
|
```shell
|
|
python opt_fastapi.py <model> --checkpoint <CheckpointPath>
|
|
```
|
|
The `<CheckpointPath>` can be a file path or a directory path. If it's a directory path, all files under the directory will be loaded.
|
|
|
|
### Configure queue
|
|
```shell
|
|
python opt_fastapi.py <model> --queue_size <QueueSize>
|
|
```
|
|
The `<QueueSize>` can be an integer in `[0, MAXINT]`. If it's `0`, the request queue size is infinite. If it's a positive integer, when the request queue is full, incoming requests will be dropped (the HTTP status code of response will be 406).
|
|
|
|
### Configure bathcing
|
|
```shell
|
|
python opt_fastapi.py <model> --max_batch_size <MaxBatchSize>
|
|
```
|
|
The `<MaxBatchSize>` can be an integer in `[1, MAXINT]`. The engine will make batch whose size is less or equal to this value.
|
|
|
|
Note that the batch size is not always equal to `<MaxBatchSize>`, as some consecutive requests may not be batched.
|
|
|
|
### Configure caching
|
|
```shell
|
|
python opt_fastapi.py <model> --cache_size <CacheSize> --cache_list_size <CacheListSize>
|
|
```
|
|
This will cache `<CacheSize>` unique requests. And for each unique request, it cache `<CacheListSize>` different results. A random result will be returned if the cache is hit.
|
|
|
|
The `<CacheSize>` can be an integer in `[0, MAXINT]`. If it's `0`, cache won't be applied. The `<CacheListSize>` can be an integer in `[1, MAXINT]`.
|
|
|
|
### Other configurations
|
|
```shell
|
|
python opt_fastapi.py -h
|
|
```
|
|
|
|
# How to benchmark
|
|
```shell
|
|
cd benchmark
|
|
locust
|
|
```
|
|
|
|
Then open the web interface link which is on your console.
|
|
|
|
# Pre-process pre-trained weights
|
|
|
|
## OPT-66B
|
|
See [script/processing_ckpt_66b.py](./script/processing_ckpt_66b.py).
|
|
|
|
## OPT-175B
|
|
See [script/process-opt-175b](./script/process-opt-175b/). |