ColossalAI/tests/test_trainer/configs/test_trainer_vit_2d.py

136 lines
3.6 KiB
Python

import os
from pathlib import Path
from colossalai.engine import AMP_TYPE
BATCH_SIZE = 512
IMG_SIZE = 32
PATCH_SIZE = 4
DIM = 512
NUM_ATTENTION_HEADS = 8
SUMMA_DIM = 2
NUM_CLASSES = 10
DEPTH = 6
train_data = dict(
dataset=dict(type='CIFAR10Dataset',
root=Path(os.environ['DATA']),
transform_pipeline=[
dict(type='Resize', size=IMG_SIZE),
dict(type='RandomCrop', size=IMG_SIZE, padding=4),
dict(type='RandomHorizontalFlip'),
dict(type='ToTensor'),
dict(type='Normalize',
mean=[0.4914, 0.4822, 0.4465],
std=[0.2023, 0.1994, 0.2010]),
]),
dataloader=dict(
batch_size=BATCH_SIZE,
pin_memory=True,
# num_workers=1,
shuffle=True,
))
test_data = dict(
dataset=dict(type='CIFAR10Dataset',
root=Path(os.environ['DATA']),
train=False,
transform_pipeline=[
dict(type='Resize', size=IMG_SIZE),
dict(type='ToTensor'),
dict(type='Normalize',
mean=[0.4914, 0.4822, 0.4465],
std=[0.2023, 0.1994, 0.2010]),
]),
dataloader=dict(
batch_size=400,
pin_memory=True,
# num_workers=1,
))
optimizer = dict(type='Adam', lr=0.001, weight_decay=0)
loss = dict(type='CrossEntropyLoss2D', )
# model = dict(
# type='VanillaResNet',
# block_type='ResNetBasicBlock',
# layers=[2, 2, 2, 2],
# num_cls=10
# )
model = dict(
type='VisionTransformerFromConfig',
tensor_splitting_cfg=dict(type='ViTInputSplitter2D', ),
embedding_cfg=dict(
type='ViTPatchEmbedding2D',
img_size=IMG_SIZE,
patch_size=PATCH_SIZE,
embed_dim=DIM,
),
token_fusion_cfg=dict(type='ViTTokenFuser2D',
img_size=IMG_SIZE,
patch_size=PATCH_SIZE,
embed_dim=DIM,
drop_rate=0.1),
norm_cfg=dict(
type='LayerNorm2D',
normalized_shape=DIM,
eps=1e-6,
),
block_cfg=dict(
type='ViTBlock',
attention_cfg=dict(
type='ViTSelfAttention2D',
hidden_size=DIM,
num_attention_heads=NUM_ATTENTION_HEADS,
attention_dropout_prob=0.,
hidden_dropout_prob=0.1,
),
droppath_cfg=dict(type='VanillaViTDropPath', ),
mlp_cfg=dict(type='ViTMLP2D',
in_features=DIM,
dropout_prob=0.1,
mlp_ratio=1),
norm_cfg=dict(
type='LayerNorm2D',
normalized_shape=DIM,
eps=1e-6,
),
),
head_cfg=dict(
type='ViTHead2D',
hidden_size=DIM,
num_classes=NUM_CLASSES,
),
embed_dim=DIM,
depth=DEPTH,
drop_path_rate=0.,
)
hooks = [
dict(type='LogMetricByEpochHook'),
dict(type='LogTimingByEpochHook'),
dict(type='Accuracy2DHook'),
dict(type='LossHook'),
dict(type='TensorboardHook', log_dir='./tfb_logs'),
dict(type='SaveCheckpointHook', interval=5, checkpoint_dir='./ckpt'),
# dict(type='LoadCheckpointHook', epoch=20, checkpoint_dir='./ckpt')
]
parallel = dict(
pipeline=dict(size=1),
tensor=dict(size=4, mode='2d'),
)
fp16 = dict(mode=AMP_TYPE.PARALLEL, initial_scale=2 ** 8)
lr_scheduler = dict(type='LinearWarmupLR', warmup_epochs=5)
schedule = dict(num_microbatches=1)
num_epochs = 60
num_microbatches = 1
logging = dict(root_path='./logs')